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Abstract

Normal-hearing observers typically have some ability to ‘‘lipread,’’ or understand visual-only speech without an accompanying audi-
tory signal. However, talkers vary in how easy they are to lipread. Such variability could arise from differences in the visual information
available in talkers’ speech, human perceptual strategies that are better suited to some talkers than others, or some combination of these
factors. A comparison of human and ideal observer performance in a visual-only speech recognition task found that although talkers do
vary in how much physical information they produce during speech, human perceptual strategies also play a role in talker variability.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

People in a crowd often understand conversation better
when they can see their conversation partners’ faces. In
fact, Sumby and Pollack (1954) reported over 50 years
ago that being able to see a talker produce speech visually
while listening to the talker’s auditory speech presented in
white noise significantly improved speech perception for
normal-hearing observers. This improvement has been cal-
culated to be as much as a 15 dB gain in signal-to-noise
ratio for visual plus auditory speech compared with audito-
ry speech alone (Summerfield, 1987). Furthermore,
although the ability to understand speech through a visual
signal alone (‘‘lipread’’ or ‘‘speechread’’) varies consider-
ably from person to person, normal-hearing observers are
typically able to understand speech to some degree when
it is presented in the visual-only modality, without an
accompanying auditory signal (Bernstein, Demorest, &
Tucker, 2000).

One issue that has surfaced in many studies of visual
speech is the variability in the accuracy of visual-only
speech perception (often referred to as ‘‘visual-only speech
intelligibility’’) across different talkers. Results from the lit-
erature indicate that some talkers are consistently easier
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than others to speechread. While not every pair of talkers
differs significantly in visual intelligibility, talker variability
has been reported to result in visual intelligibility differenc-
es of anywhere from 4% to 23% between talkers (Bernstein,
Jiang, & Alwan, 2001; Gagné, Querengesser, Folkeard,
Munhall, & Masterson, 1995; Kricos & Lesner, 1982,
1985; Lachs & Hernandez, 1998; Montgomery & Jackson,
1983). Similarly, auditory intelligibility has been reported
to vary by 5–20% between talkers, depending on listening
conditions (Cox, Alexander, & Gilmore, 1987; Lachs &
Hernandez, 1998).

Understanding the sources of variability in visual-only
talker intelligibility is potentially important because, like
auditory talker variability, visual talker variability may
have cognitive consequences for speech perception. For
example, changing talkers from trial to trial during a
speech perception task has been found to affect cognitive
processing whether the speech is auditory or visual. Audi-
tory talker variability decreases speech intelligibility and
increases word-naming latencies when the words in a list
are spoken by different talkers; also, recognition memory
is better for an old word presented in the original presenta-
tion voice than for an old word presented in a novel voice,
suggesting that talker-specific information is encoded dur-
ing auditory speech perception (Pisoni, 1997). Although
fewer studies have examined the cognitive effects of talker
variability in visual speech, Yakel, Rosenblum, and Fortier
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(2000) reported that changing talkers from trial to trial
produced a decrease in speechreading performance com-
pared with using the same talker for all trials. This result
suggests that talker variability in visual speech also affects
the cognitive processing of speech.

A potential pitfall of measuring variability in visual talk-
er intelligibility is that speechreading ability varies a good
deal across observers. If these individual differences in
speechreading ability affect the magnitude and particularly
the direction of visual talker intelligibility differences, then
the variability in speechreading ability would have a larger
effect than talker variability and perhaps render talker var-
iability irrelevant. The evidence indicates that although
individual differences in speechreading scores can be large,
the direction of visual intelligibility differences for different
talkers tends to be consistent across observers. Demorest
and Bernstein (1992) conducted a systematic study of the
effects of talker variability on the speechreading perfor-
mance of 104 normal-hearing adults. They found a main
effect of talker on speech intelligibility scores, but no Talk-
er · Observer interaction in their results. These findings
indicate that visual intelligibility differences between talkers
existed but that the direction of the differences was consis-
tent across observers.

Although the evidence suggests that visual intelligibility
differences among talkers are consistent across observers,
the specific factors underlying these differences are
unknown. Two general types of factors may underlie talker
visual intelligibility differences—those due to the talkers’
production patterns and those due to the observer’s percep-
tual strategies. To illustrate these factors, take a situation
in which it is known that Talker A is less intelligible than
Talker B. It is also known that Talker A moves only her
lips during speech, whereas Talker B moves his lips in a
similar way but also provides additional information about
what he is saying through his jaw movements. One possible
cause of the intelligibility difference is that the increased
physical availability of information makes Talker B easier
to understand than Talker A. Alternatively, it might be
that the observer does not pay attention to either talker’s
lips, but instead watches only the talkers’ jaw movements.
In this case, because Talker B produces informative jaw
movements but Talker A does not, Talker B would again
be more intelligible than Talker A, but this time the intel-
ligibility difference would be due to the observer’s perceptu-
al strategy rather than to differences in the amount of
physical information produced by each talker. Finally, a
combination of both factors is possible: the talkers might
produce different amounts of information, and also the
observer’s perceptual strategies might be better suited to
some talkers than others.

The extant models that posit the variability is due to
physical information differences across talkers either
describe physical characteristics of highly intelligible talk-
ers or attempt to relate variability in visual intelligibility
with observable physical differences in speech production.
Lesner (1988) listed several factors that characterize a
‘‘good’’ talker (i.e., one who is highly visually intelligible)
or tend to make any talker more visually intelligible.
According to Lesner, visual intelligibility increases as more
facial information is made available; seeing the lips alone is
not as good as seeing the whole face. Normal lip move-
ments produce more intelligible speech than exaggerated
ones, and more intelligible talkers are claimed to have thin-
ner lips. Facial hair produces lower visual intelligibility,
and an ‘‘expressive’’ face increases visual intelligibility.
Further characteristics of highly intelligible visual speech
include facial and other message-related gestures, simpler
linguistic messages, and familiarity with the talker. Some
studies also report that the female talkers they used are
more visually intelligible than the male talkers (e.g., Lachs,
1999), although this is not always the case and may be a
question of individual talker differences rather than more
general gender differences.

Although Lesner (1988) provided a description of what
seems to make a good talker, this description does not pre-
dict specific relationships between physical characteristics
of the talker and perceptual performance of speechreaders.
Other studies have attempted to quantify these relation-
ships more precisely. For instance, Montgomery and Jack-
son (1983) measured the height, width, and area of lip
opening during vowel production and the acoustic and
visual durations of vowels to test whether these factors
would predict the vowel identification performance of
observers. Measurements of lip opening and visual vowel
duration were moderately good predictors of perceptual
confusions and multidimensional scaling (MDS) space dis-
tances among vowels produced by some talkers. However,
the best predictors and the strength of the predictions var-
ied by talker and were not significant for all talkers. The
measures were good predictors for the least intelligible talk-
er and two others, but not for a talker who was close in
intelligibility to the latter two.

In a more recent study of visual intelligibility, Bernstein
et al. (2001) measured the physical distances between con-
sonant articulations using markers placed on the lips,
cheeks, and chin. The perceptual distances between conso-
nant phonemes were also calculated with a MDS analysis.
Bernstein et al., reported that more visually intelligible
talkers displayed higher correlations between physical
distances among consonant articulations and perceptual
distances between phonemes on the MDS analysis. Howev-
er, the perceivers were presented with visual stimuli that
included the markers used in the physical analysis, so the
perceivers may have been biased to use these locations in
generating their responses.

As described above, previous research generally indicates
that the physical characteristics of the talkers and perhaps
the spatiotemporal cues they produce during speech may
be important for visual-only speech identification. In addi-
tion to these investigations of talkers’ production patterns,
observations about listeners’ perceptual strategies have
been made in a study of perceivers’ gaze behavior during
visual-only speech. This evidence from the eye-movement
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literature has suggested that different eye-gazing behaviors
may occur during the perception of a more versus less visu-
ally intelligible talker. Lansing and McConkie (2003)
reported when visual-only speech was presented, observers
tended to spend more time gazing at the mouth than when
visual speech was presented with auditory speech in low-
level noise. Similarly, within the visual-only speech condi-
tions, observers tended to gaze more at the mouth of the
talker who had lower intelligibility scores than at the mouth
of the other talker. Lansing and McConkie suggested that
the observers directed more attention toward the mouth
when they had more difficulty gleaning the necessary infor-
mation from visual speech. These changes in processing
strategies may have been prompted by a lack of necessary
physical information or by a discrepancy in the locations
of physical information and of typical gazes.

Despite considerable evidence that talkers differ in visual
intelligibility, many studies of auditory-visual or visual-on-
ly speech fail to account for this in their experimental
designs or the interpretation of their results. Studies that
use two or more talkers sometimes fail to take talker differ-
ences into account in the interpretation of their results. For
instance, Vatikiotis-Bateson, Eigsti, Yano, and Munhall
(1998) studied the eye movements of English-speaking sub-
jects who watched and listened to a talker speaking English
and Japanese-speaking subjects who watched and listened
to a talker speaking Japanese. The Japanese speakers fixat-
ed on one of the talker’s eyes less frequently than the Eng-
lish speakers during speech presented at high auditory
signal-to-noise levels. The authors concluded that this dif-
ference was probably a language-specific effect but did
not examine the possibility that differences in the visual
appearance or intelligibility of the talkers might have influ-
enced the results. Another study, by Yakel et al. (2000),
looked at the effects of changing talkers from trial to trial
on speechreading performance and found that perfor-
mance fell by an average of 7.9% for mixed-talker sentence
lists compared to lists in which only a single talker
appeared. They attempted to control for non-specific stim-
ulus differences between talkers by using different-colored
filters on each trial for both single and multiple-talker lists.
However, they acknowledged that they had not controlled
for differing effects of the colors on perceptual salience of
the talkers’ faces, nor did they examine differences due to
visual intelligibility of the talkers.

Part of the difficulty with such studies of variability in
visual speech is that perceptual measures of visual intelligi-
bility do not account for how much information is physi-
cally available in the stimulus. This means that variability
in the physical information available in different talkers’
speech has been confounded with how human observers
are using that information. Separating the two factors of
physical variability in the available information and per-
ceptual strategies used to process that information can be
accomplished through a technique called ideal observer

analysis. Ideal observer analysis is a technique that can
be used to quantify the amount of physical information
available in a perceptual task. The ideal observer is defined
in such a way as to produce the best possible performance
on a particular task, and so is limited only by the amount
of physical information available in the stimuli (Geisler,
2004). When the signals in a task are specified exactly
and presented in uncorrelated Gaussian white noise, the
ideal observer acts as a template matcher, choosing the
response that maximizes the cross-correlation between
the presented stimulus and the stored templates of the possi-
ble signals (Green & Swets, 1966; Tjan, Braje, Legge, &
Kersten, 1995). Ideal observers cannot be formulated for cer-
tain types of tasks, such as those with subjective or open-end-
ed responses (Geisler, 2004), but an ideal observer analysis is
tractable and computationally feasible in many psychophys-
ical tasks such as those involving the measurement of the
detectability index or of contrast energy thresholds.

The ideal observer provides an objective, assumption-
free measure of the level of performance possible in various
conditions of a task, resulting in a yardstick for human per-
formance and a method for separating the physical avail-
ability of information from perceptual strategies used to
process that information. The performance of a human
or other sub-ideal model observer relative to the ideal is
described by a measure called efficiency, which is the ratio
of the ideal to the sub-ideal contrast energy required to per-
form the given task at threshold. Because the ideal observer
uses all the physical information available, efficiency pro-
vides an index (of up to 100%) of how much information
a given observer is using when performing a task. An
observer with an efficiency of 100% has the same contrast
energy threshold as the ideal observer and thus is optimally
efficient. An observer with an efficiency of less than 100%
has a higher contrast energy threshold than the ideal
observer and by definition is not using all the physical
information available to perform the task. It is assumed
that human performance will generally not be optimally
efficient in a given task (Geisler, 1989). However, examin-
ing efficiency across conditions of a task provides an index
of whether human observer performance is consistent with
the physical availability of information. For example, if
efficiency is relatively constant across the conditions of a
task, then human contrast energy thresholds display a sim-
ilar pattern to ideal observer contrast energy thresholds
and are consistent with the physical availability of informa-
tion. However, if efficiency varies across conditions, then
factors other than the physical availability of information,
specifically perceptual strategies, must be affecting human
thresholds.

In this study, we use ideal observer analysis to test the
hypothesis that differences in visual talker intelligibility
are due to physical factors inherent to the talkers’ speech,
as suggested by the descriptions of Lesner (1988) and the
results of Montgomery and Jackson (1983) and Bernstein
et al. (2001). The alternative hypothesis is that differences
in talker visual intelligibility are due to the observer’s
perceptual strategies, as suggested by Lansing and
McConkie’s (2003) eye movement results. Because it is not
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possible to formulate an ideal observer for tasks with open
response sets, such as the open-ended identification of spo-
ken words, we chose to measure contrast energy thresholds
for the identification of a set number of videotaped spoken
words presented without sound (‘‘word identification thresh-
olds’’). These words were presented in uncorrelated Gauss-
ian white pixel noise, as obtaining human thresholds in this
type of noise greatly facilitates the ideal observer analysis.
Because previous studies have found variability across talk-
ers in the percentage of words identified correctly, we pre-
dicted that human word identification thresholds measured
for a given percentage correct would also vary across talkers.
If the ideal observer’s thresholds vary in a similar way, the
results of the present study would be consistent with the
hypothesis that the variability in human speech recognition
across talkers is due to variability in the physical stimulus
alone. However, if human thresholds vary but ideal thresh-
olds either remain constant or vary in a different fashion
across talkers, the results would indicate that human observ-
ers are more efficient at using the available information for
some talkers than for others. This would be consistent with
the hypothesis that the perceptual strategies used by the
human observers are more optimally suited for understand-
ing some talkers than others.
2. Method

2.1. Observers

Eight observers participated in this study (4 females, 4 males). Seven of
the 8 observers were naı̈ve to the purpose of the experiment; the other
observer was an author (BC). All had normal or corrected-to-normal
vision. Their ages ranged from 23 to 40, with a mean age of 28.5. Each
observer took four approximately 1-h sessions to complete the experiment.
With the exception of BC, they were compensated at a rate of $10 per hour
for their time.

2.2. Apparatus

Stimuli were displayed on Sony Trinitron Multiscan G520 monitors.
Two monitors in separate testing rooms were used during testing of human
observers. Each monitor had a resolution of 1024 · 768 pixels, subtending
16.4 · 12.4� of visual angle at the viewing distance of 130 cm. The frame rate
was set to 85 Hz. The monitors were each controlled by an Apple G4 com-
puter running Mac OS 9.2.2. The experiment was conducted in the MAT-
LAB programming environment (version 5.2.1 for MacIntosh) using the
Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997).

Luminance calibrations were performed for each monitor with a Minol-
ta Luminance Meter LS-100 photometer, and a 2025-element look-up table
was built from the calibration data (Tyler, Chan, Liu, McBride, & Kontse-
vich, 1992). Luminance on one of the monitors ranged between 0.8 and
102.0 cd/m2, with an average luminance of 33.2 cd/m2; on the other monitor,
luminance ranged between 0.9 and 145.1 cd/m2, with an average luminance
of 49.6 cd/m2. On each trial of the experiment, appropriate luminance values
from the calibrated look-up tables were selected by the computer software
and stored in the 8-bit look-up tables for the monitor.

2.3. Stimuli

The stimuli comprised eight highly familiar, monosyllabic English
words matched for frequency (Kucera and Francis, 1967). All words
contained three different speech sounds (phonemes) and were of the form
consonant-vowel-consonant (CVC). To the extent possible, the words were
selected so as to maximize the number of different phonemes present in the
stimulus set. The words were far, gave, job, house, put, should, thought, and
voice.

Eight Indiana University undergraduates (4 females, 4 males) served
as talkers for this experiment and were videotaped saying the stimulus
words using a Canon ZR60 digital video camera. The talkers were
requested to shave if applicable on the morning of the recording. When
they arrived for the recording session, they were asked to pull their hair
back from their face, remove their glasses if necessary, and put on a
white T-shirt over their clothing. During a recording session, the talker
sat in a chair and was asked to place his or her arms on the armrests
and keep as still as possible while looking directly at the camera. The
camera angle was adjusted so that the talker was recorded from the
top of the shoulders to the top of the head. The list of stimulus words
as read by one of the authors (BC) was played from a CD recording
over computer speakers at a comfortable listening volume that was kept
constant for all talkers. The words were spaced approximately 5 s apart
on the recording, and the talker was instructed to repeat each word
after it was played. Each talker was given at least three opportunities
to say all the stimulus words so that there would be several tokens
of each word to choose from in constructing the experimental stimuli.
All talkers were played the same recording of the stimulus words so
as to minimize phonetic and prosodic variability in the words they were
to pronounce and also to eliminate excessive head and eye movements
that could have arisen if talkers had been asked to read the words from
a printed list.

The videos were recorded at a sampling rate of 30 frames per second.
Simultaneously with each video recording, a high-quality audio recording
of the talker’s speech was also recorded at a sampling rate of 44,100 Hz
using a TASCAM DA-P1 digital audio tape (DAT) recorder.

Once the video and audio recordings had been made, they were
uploaded into iMovie (version 3.0.3) and saved. The saved recordings were
then imported into Final Cut Pro HD (version 4.5). The video and audi-
tory recordings for each talker were aligned manually by using a sharp
clicking sound produced at the beginning of each recording and also
through agreement between the audio track from the video and the high-
er-quality DAT recording. The aligned recordings were then segmented
into individual Quicktime movie files, one for each word token. Each talk-
er’s best token for each word was chosen for use in the experiment as fol-
lows: Two raters (BC and a research assistant) independently ranked the
three tokens of each word for how good they would be as experimental
stimuli. ‘‘Good’’ tokens were those without eyeblinks and with minimal
head motion. The raters rarely disagreed on which token was the best
for use in the experiment, but in cases of disagreement BC’s best-rated
token was used.

After the word tokens had been chosen, the duration of each word clip
in frames was measured from the last still frame before visual articulation
of the word began to the first still frame after visual articulation of the
word had been completed and no sound was audible. The longest word
clip for any talker was 30 frames (1 s) in duration. So that talker differenc-
es would not be confounded with word clip duration, all other word clips
from all talkers were extended to be 30 frames in duration by including
more recorded frames as needed on either side of the word’s active
articulations.

For purposes of the present experiment, only the visual portion of
each word clip was used; no auditory information was presented.
Each visual-only 30-frame word clip was exported from Final Cut
as a series of TIFF images. These images were scaled so that the talk-
ers’ faces were all the same height in pixels. So as to avoid problems
of upsampling, the scaling factor for each talker was determined by
comparing his or her face height with the shortest face height. The
width of the talkers’ faces was scaled using the same scaling factor
as the height.

The TIFF images were converted to grayscale and were recombined
into movies represented as three-dimensional matrices in MATLAB.
The values in the matrices were converted to contrast values such that
the contrast (cxy) at pixel location (x,y) was given by
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cxy ¼
lxy � L

L

with L equal to the average luminance and lxy equal to the pixel lumi-
nance. For stimulus presentation, each talker’s face was contained within
an elliptical region. The size of the elliptical region was constant for all
talkers, at 97 pixels wide and 150 pixels high. The ellipse was embedded
in a rectangle that was also 97 · 150 pixels; portions of the rectangle that
fell outside the ellipse were set to a constant background of zero contrast
(i.e., average luminance) for all talkers. The elliptical region was placed
according to the average position (over all 30 frames) of the inner corner
of the left eye on each word for each talker, and it contained the facial re-
gion from the forehead to the bottom of the chin and between the outer
corners of the eyes. Example still frames from the stimulus movies are
shown in Fig. 1.

For the final movies used in stimulus presentation, the first and last
frames of each word were duplicated six times each so that the movie
began and ended with seven identical still frames. Pilot data had suggested
that these still frames gave the observer a better chance of focusing his or
her attention on the stimulus before articulation began. The movies pre-
sented to the human observers thus contained 42 frames, each one present-
ed for three screen refreshes at a refresh rate of 85 Hz, for a total movie
duration of �1.5 s.

Prior to each trial, a word movie was read into memory, the contrast
energy (i.e., integrated squared pixel contrast) of the movie was set to the
desired value by multiplying the movie matrix by an appropriate constant,
and contrast values were converted to luminance values. A linear 8-bit
look-up table for the display was constructed using these luminance val-
ues. Finally, the movie luminance values were mapped onto the look-up
table values.

2.4. Noise fields

A unique sample of dynamic Gaussian white contrast noise was
generated on each trial and added to the trial’s word movie. The size
of the Gaussian noise field was identical to the size of the word movie
(97 pixels wide · 150 pixels high · 42 frames). The noise field values
were taken from a Gaussian pseudo-random number generator with
a mean of 0 and a variance of 0.01. As with the word movies, each
pixel’s value in the noise matrix was treated as a contrast value. The
variance chosen for the noise ensured that at least 95% of the values
in the distribution would fall within the linear contrast range of the
noise display. Values that exceeded ±2 standard deviations from the
mean were resampled to fall within the range of displayable contrast
values. The spectral density of the noise (energy per unit bandwidth)
at the viewing distance of 130 cm was 2.675 · 10�6 deg2 in all experi-
mental conditions.

2.5. Viewing conditions

Each 97 · 150 pixel movie frame subtended a visual angle of 1.6 · 2.5�
at the 130 cm viewing distance. Viewing was binocular through natural
pupils, and a combination forehead and chinrest stabilized the observer’s
head. The monitor supplied the only source of illumination during the
experiment.
Fig. 1. Example static frames from talker movies. The talkers are, from left to
talker.
2.6. Procedure

A one-of-eight word identification task was used to estimate word
identification thresholds for each talker. The contrast energy of the word
movies was manipulated across trials using an adaptive one-up, one-down
staircase procedure to obtain each observer’s 50% correct word-identifica-
tion threshold for each talker (chance performance = 12.5%) on a fixed
number of trials. In the first session, each observer completed blocks of
50 practice trials for each of the eight talkers. In the subsequent three test
sessions, the observers completed blocks of 150 trials for each of the eight
talkers; only these 150 trials were used to estimate word identification
thresholds. Trials were blocked by talker in all sessions, and talker order
was randomized and differed for the practice and test trials for each
observer.

Throughout each block of trials, a white fixation rectangle at the center
of the screen framed the location where the stimulus appeared. On each
trial, one of the eight word movies was played, without sound, within
the fixation rectangle. The word movies were presented in random order
but each one appeared approximately the same number of times during
a block of trials. After the movie was played, the monitor was set to aver-
age luminance, and the observers were presented with a selection screen
containing written representations of the eight words. Four of the words
(far, gave, house, and job) appeared at the top of the screen above the fix-
ation rectangle, and the other four words (put, should, thought, and voice)
appeared at the bottom of the screen below the fixation rectangle. Observ-
ers chose with the mouse the word they thought had been presented. After
a choice was made, auditory feedback indicated whether the response was
correct, and the display was set to average luminance prior to the begin-
ning of the next trial. During the test sessions, observers received breaks
every 50 trials.

The psychometric data were fit by Weibull functions, and the word
identification threshold was identified as the contrast energy yielding
50% correct responses.

3. Results

3.1. Human observers

Contrast energy thresholds were obtained for all of the
human observers on all eight talkers. Because human word
identification thresholds could be measured in uncorrelated
Gaussian white noise, the formulation of the ideal observer
was tractable and greatly simplified, as described in the
next section. Individual human observer thresholds are
shown in Fig. 2. In this figure and all subsequent ones,
F1 through F4 correspond to the four female talkers and
M1 through M4 correspond to the four male talkers.

Consistent with findings in the visual-only speech litera-
ture (Bernstein et al., 2001; Gagné et al., 1995; Kricos &
Lesner, 1982, 1985; Lachs & Hernandez, 1998; Montgom-
ery & Jackson, 1983), there was considerable variability in
right, F2, M2, M1, F4, M4, F3, M3, and F1. F, female talker, M, male



Fig. 2. Contrast energy thresholds for the eight human observers in the word-identification task. F, female talker, M, male talker. The panels on the left
show thresholds for the female observers and the panels on the right show thresholds for the male observers. Error bars correspond to ±1 SD.
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word identification thresholds across talkers for the human
observers. The range of contrast energy thresholds across
talkers spanned anywhere from 0.65 to 1.1 log units within
observers, with an average range of 0.88 log units. Based
on the patterns of contrast energy thresholds, if contrast
energy were held constant, visual-only intelligibility, or
the percent of words identified correctly, would be expected
to vary considerably across talkers. Also consistent with
the literature (Demorest & Bernstein, 1992), the pattern
of cross-talker variability was similar for the different
observers (although human observers varied in their
overall levels of performance, here indexed by contrast
energy thresholds). For example, talker M2 produced the
highest word-identification threshold for all the human
observers, and talker M1 had one of the lowest thresholds
for all the human observers.

3.2. Ideal observer

The ideal observer for this task maximizes the cross-cor-
relation between the word movie (signal + noise) stimulus
and each of the eight possible noise-free word movie
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stimulus matrices, or templates (Green & Swets, 1966; Tjan
et al., 1995). Ideal observer thresholds were obtained for
each talker using Monte Carlo simulations in which the sig-
nal + noise stimulus was compared with all of the noise-
free templates. On each trial, the template with the highest
cross-correlation with the stimulus was chosen. The con-
trast energy of the signal was varied to obtain an estimate
of the 50% correct word-identification threshold for each
talker. Each contrast energy threshold was estimated by fit-
ting a Weibull function to the data from 1000 simulated tri-
als. The ideal observer’s thresholds are shown in the closed
symbols in Fig. 3. The corresponding human efficiencies
are shown in the closed symbols of Fig. 4.

Like the human thresholds, the thresholds obtained for
the ideal observer also varied somewhat across talkers,
indicating that the amount of physical information avail-
able to perform the word identification task varied. Also
like the human observers, the ideal observer’s threshold
for M2 was the highest; however, the pattern of variability
was generally not very similar to that of the human observ-
ers. For instance, talker M1 had one of the higher thresh-
olds for the ideal observer but one of the lower
thresholds for most human observers. Also, the range of
the thresholds across talkers was much smaller for the ideal
observer (0.47 log units) than for any of the human
observers.

The absolute levels of efficiency were low, with average
efficiency ranging from 0.03 to 0.3% for individual observ-
ers (mean across observers = 0.09%). Some factors that
may have contributed to the low efficiencies are discussed
in the ‘‘Summary and Conclusions’’ section below. Howev-
er, the variability in efficiencies across talkers, rather than
the absolute magnitude of efficiencies, is the primary focus
of this study.

If the differences in the physical availability of informa-
tion that caused the variability across talkers in the ideal
observer thresholds had also accounted for all of the
Fig. 3. Contrast energy thresholds for the ideal observer (filled circles),
which used information from the whole face of each talker, and for the
model observers whose information use was spatially restricted to the
lower half of the face (open circles) or the mouth only (open triangles).
Error bars correspond to ±1 SD.
variability across talkers in the human observer thresholds,
the efficiencies, which are ratios of human to ideal observer
thresholds, would have been relatively constant across talk-
ers. Because efficiencies varied across talkers, differences in
the physical availability of information do not fully
account for the variability in human observer thresholds
across talkers. This implies that human perceptual strate-
gies for using that information must also play a role in
the variability of human observer thresholds across talkers.
In the following section we describe several possible models
of human perceptual strategies for performing the word
identification task that we explored through a series of
computer simulations.

A critical assumption of ideal observer analysis is that
once information is lost at a particular stage, it cannot be
recovered and so must play a role in the ultimate measure-
ment of the threshold (Geisler, 1989). This is not an airtight
assumption—some alternate configuration of circumstanc-
es can always be imagined that would also result in the
same threshold function—but it is the most parsimonious
method of accounting for the data. So, the model compar-
isons described below focus on comparing the variability in
efficiencies across talkers rather than the magnitude of the
efficiencies, in a manner analogous to Geisler’s (1989)
concept of relative efficiency.

4. Simulations

4.1. Spatially restricted models

Previous work on speech perception suggests a couple of
perceptual strategies that humans might adopt when per-
ceiving visual-only speech. Some studies have used only
the lower half of the face as a visual stimulus (Bernstein
et al., 2001; Campbell, 2000), which assumes implicitly that
humans only need information from the lower half of the
face for effective visual-only speech perception. In addition,
it has been reported that humans tend to concentrate their
eye movements around the mouth during visual-only
speech perception (Lansing & McConkie, 2003). To
explore these ideas, we developed two constrained, sub-ide-
al observer models based on the ideal observer’s decision
rule. Specifically, we conducted computer simulations to
test whether restricting the use of spatial information to
either to the lower half of the face or to the mouth only
would provide a better description than the ideal observer
model of the variability we observed in human thresholds
across talkers.

4.1.1. Lower half of the face

One possible human perceptual strategy in the visual-
only word identification task is to look only at the lower
half of the face. The lower half of the face, from the bottom
of the nose down, includes the mouth, jaw, and chin, which
all move during speech production. For purposes of this
simulation, the lower half of the face was defined as all
pixels in the word movies falling below the nose. Because



Fig. 4. Model-to-human threshold ratios for each of the human observers. Shown in the figure are ratios for the human observers vs. the ideal, whole-face
observer (efficiencies; filled circles), the human observers vs. the lower-half model observer (open circles), and the human observers vs. the mouth-only
model observer (open triangles). Error bars correspond to ±1 SD.

Fig. 5. Example static frames from the lower-half (left, Talker F2) and
mouth-only (right, Talker F4) talker movies.
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the talkers’ faces had been scaled to the same height, the
bottom of the nose was in nearly the same position for
all talkers. Accordingly, the same dimensions were used
for all talkers in defining the lower half of the face. The
resulting stimuli were the same width and approximately
half the height of the original movies, at 97 pixels wide · 76
pixels high · 42 frames. An example of a still frame from
the lower half of the face only (taken from Talker F2) is
shown in the left panel of Fig. 5.
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To simulate the effect of looking only at the lower half of
the face, information use for a model observer was spatially
restricted to the lower half of the face only. The data used
to estimate contrast energy thresholds of the model observ-
er for each talker were obtained using Monte Carlo simu-
lations (1000 trials per talker), as described for the ideal
observer. Specifically, on each trial, the model observer’s
noise-free templates of the lower half of the face only were
compared with signal-plus-noise stimulus information
from the lower half of the face only. To set the contrast
energy of the movie on each trial, the entire movie matrix
for the whole face was multiplied by an appropriate con-
stant, and then the information from the lower half of
the face only was presented as the stimulus in noise. The
contrast energy was set for the entire movie rather than
for the lower half of the face only so that the distribution
of contrast energy across the stimulus could be compared
with that for the whole face, ideal observer condition.

4.1.2. Mouth only

Another possible human perceptual strategy in the visu-
al-only word identification task is to look only at the talk-
er’s mouth, as suggested by Lansing and McConkie (2003).
To simulate this strategy, a model observer was implement-
ed with information use spatially restricted to the mouth
only. The mouth-only area of the word movies was defined
as the smallest region that could accommodate the entire
mouth from the top of the upper lip to the bottom of the
lower lip and from corner to corner for all the talkers.
The resulting stimulus measured 69 pixels wide · 54 pixels
high · 42 frames. An example of a still frame from the
mouth-only stimuli (taken from Talker F4) is shown in
the right panel of Fig. 5. Monte Carlo simulations were
conducted as described for the lower half of the face stimuli
to obtain contrast energy threshold estimates for each
talker.

4.1.3. Evaluation of ideal and spatially restricted models
Contrast energy thresholds for the spatially restricted

model observers are shown in the open symbols in Fig. 3;
ratios of the model-to-human performance, similar to effi-
ciency for the ideal observer, are shown in open symbols in
Fig. 4.1 The open circles correspond to the lower half of the
face observer model and the open triangles correspond to
the mouth-only observer model.

There are several aspects of these data worth noting.
First, the lower half and mouth-only models had approxi-
mately the same threshold for M2, the most difficult talker
for the human and ideal observers, suggesting that little
information was available in the lower half of his face out-
side the region of the mouth. Second, the contrast energy
1 The model-to-human threshold ratios for the spatially restricted
models are not efficiencies in the sense of measuring the percentage of
available information used, because unlike the human or ideal observers,
the spatially restricted model observers did not have access to information
from the whole face.
thresholds for the lower half of the face model covered a
range of 1.1 log units, which is on the upper end of the var-
iability in the human thresholds (human mean = 0.88 log
units; range = 0.65 to 1.1 log units). The thresholds for
the mouth-only model covered a range of 0.74 log units,
which falls in the middle of the range of human thresholds.
As expected, the thresholds for model observers that were
spatially restricted in information use were higher than
for the ideal observer, which had access to information
from the whole face. Thresholds for the lower half model
were an average of 0.4 log units higher than for the whole
face model, and thresholds for the mouth-only model aver-
aged 0.7 log units higher. Because the spatially restricted
observer thresholds were higher than ideal observer thresh-
olds, model-to-human threshold ratios were also higher.
Average model-to-human threshold ratios for individual
observers ranged from 0.08% to 0.5% for the lower half
model (mean = 0.2%) and from 0.1% to 0.8% for the
mouth-only model (mean = 0.4%).

Finally, the model-to-human threshold ratios for the
mouth-only observer appeared to be more constant across
talkers than for the ideal observer or the lower half observ-
er, indicating that the mouth-only model provided the best
fit to the variability in the human data. To quantitatively
compare the goodness-of-fit of the ideal and spatially
restricted models to the human data, the models were each
scaled for the best fit to the human data, using the logic for
relative efficiency described above (Geisler, 1989). Specifi-
cally, the base-10 logarithms of the contrast energy thresh-
olds from each of the three models were scaled by a factor
that minimized the summed, squared deviation of the mod-
el’s pattern of thresholds from a given human observer’s
log-transformed contrast energy thresholds. The thresholds
were log transformed to allow for properly scaled compar-
isons of the model thresholds with the human thresholds,
which were much higher. The average deviation of the
model’s contrast energy thresholds from the human thresh-
olds was computed using a statistic called the root mean
squared deviation (RMSD; cf. Massaro, Cohen, Campbell,
& Rodriguez, 2001; Massaro & Friedman, 1990). RMSD is
calculated as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðxpred � xobsÞ2

n

s
;

where xpred is the predicted value (here, model thresholds),
xobs is the observed data (here, human thresholds for
individual observers), and n is the number of conditions
(here, talkers). Although the RMSD does not control for
the ‘‘complexity’’ or number of free parameters in the
models compared, here it is an appropriate benchmark of
model performance because all of the models are presum-
ably of equal complexity (Pitt, Kim, & Myung, 2003).
The models do not differ formally and were each fitted to
the human threshold data using only one free parameter
(the scaling parameter); only their templates and the
stimuli they were presented with differed. The RMSD for



2 Only 200 trials per talker were used in each condition for the spatial
and temporal uncertainty simulations, rather than the 1000 trials per
talker used in the lower half and mouth-only simulations, because the
spatial and temporal uncertainty simulations were computationally much
more intensive.
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each model fit was calculated separately for each human
observer. It was considered appropriate to fit the models
to the data from individual observers rather than to the
average of the individual data because the thresholds of dif-
ferent observers also varied greatly in absolute magnitude
(see Fig. 2).

The model with the lowest RMSD, or smallest error,
provides the best fit to the human data. The ideal observer,
or whole face, model had a mean RMSD of 0.24 log units
(SD = 0.04 log units) across human observers. The lower
half model had a mean RMSD of 0.27 log units
(SD = 0.04 log units), and the mouth-only model had a
mean RMSD of 0.22 log units (SD = 0.04 log units). Paired
t tests showed that the RMSDs for the whole face and low-
er half models were not significantly different
(t (7) = �1.593, p > .05), but that the RMSDs for the
mouth-only model were significantly lower than for either
the whole face or the lower half model (t (7) = 3.537,
t (7) = 4.075, respectively; ps < .05). These results indicate
that of the ideal and spatially restricted models, the
mouth-only model performed best overall in fitting the
human data. When the data from individual observers were
considered, the mouth-only model also performed best
overall. For the individual observers, the RMSDs for the
mouth only were lowest in six of eight cases and second
lowest in the other two cases. The RMSDs for the lower
half of the face were lowest for one observer, second lowest
for one observer, and highest for the remaining six observ-
ers. The whole-face RMSDs were lowest for one observer,
second lowest for five observers, and highest for two
observers.

4.1.4. Summary: Spatially restricted models

The results from simulations conducted with an ideal
observer and two model observers spatially restricted in
their use of information suggest that the physical informa-
tion differences across talkers combined with the percep-
tual strategy of only attending to the talker’s mouth
produce the best agreement with human data of the mod-
els tested. The ideal or whole face model’s contrast energy
thresholds showed variability across talkers, but the pat-
tern of variability displayed by the mouth-only model
was more consistent with human performance. The lower
half of the face model did not improve significantly over
the whole face model and in fact displayed higher overall
RMSDs.

This study primarily sought to find whether cross-talker
variability could be explained by physical information dif-
ferences or if it could be due to human perceptual strate-
gies. The answer so far seems to be that cross-talker
variability results from both physical differences and per-
ceptual strategies including perhaps the limiting of atten-
tion to the region around the mouth of the talker.
However, although the mouth-only model does provide a
better fit of the human data than the ideal observer model,
it does not account for all of the variability in human
thresholds across talkers.
4.2. Models of other perceptual strategies and inefficiencies

Spatially restricting information use to the lower half of
the face and the mouth only are the primary perceptual
strategies suggested by the visual-only speech perception
literature (Bernstein et al., 2001; Campbell, 2000; Lansing
& McConkie, 2003). To determine whether other simple
perceptual strategies and inefficiencies could also be con-
tributing to the remaining variability across talkers, several
other simulations were conducted using model observers
with other built-in constraints including spatial uncertain-
ty, temporal uncertainty, and selective attention to the
highest contrast pixels in the word movie. For all of these
simulations, the mouth-only version of the stimuli was
used, because the mouth-only model provided a significant-
ly better fit to the human data than the other models tested
and is also supported by eye-movement data.

4.2.1. Spatial and temporal uncertainty

One possible factor that could have limited human per-
formance on the visual-only word-identification task is spa-
tial uncertainty, or uncertainty about the exact spatial
location of the stimulus on the computer screen. Spatial
uncertainty has also been described as uncertainty about
where spatially to apply a template that is to be matched
to the stimulus (Eckstein & Whiting, 1996). In addition
to spatial uncertainty, human observers may have experi-
enced temporal uncertainty, or uncertainty about when
the word occurred during stimulus presentation. Simula-
tions were conducted to explore the effects of small
amounts of spatial or temporal uncertainty on model
observer thresholds.

In the spatial uncertainty simulation, on each trial, the
stimulus was compared with templates that had been shift-
ed to all possible positions within a certain number of pix-
els of the original templates, which in this case were the
mouth-only versions of the word movies. The word corre-
sponding to the template with the highest cross-correlation
with the stimulus was chosen as the response. Spatial
uncertainties of up to 1, 3, and 5 pixels were simulated in
this way. In order to allow for uncertainty in the position
of the stimulus, 10 additional zero-contrast pixels were
added to each side of the mouth-only word movies, thus
increasing the stimulus size from 69 pixels wide · 54 pixels
high · 42 frames to 89 pixels wide · 74 pixels high · 42 -
frames. (Because the last dimension in the stimulus size is
temporal and represents the number of frames in the word
movie, this did not need to be altered for the spatial uncer-
tainty simulations.)

Monte Carlo simulations of 200 trials per talker2 were
conducted to estimate word-identification thresholds,
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shown in the left panels of Fig. 6, for each of the spatial
uncertainty conditions. As expected, the spatially uncertain
model observer thresholds increased relative to the spatial-
ly fixed mouth-only model, and the model-to-human
threshold ratios showed a corresponding increase. For spa-
tial uncertainties of 1 pixel, thresholds increased by an
average of 1.2 log units relative to the mouth-only model.
Model-to-human threshold ratios were between 0.14%
and 0.7% for individual human observers, with an overall
average of 0.4%. For spatial uncertainties of up to 3 and
5 pixels, thresholds averaged 1.4 and 1.5 log units higher,
respectively, than thresholds for the mouth-only model.
In addition, average model-to-human threshold ratios for
individual observers ranged from 0.2% to 1.6%
(mean = 0.8%) for the 3-pixel condition, and from 0.4%
to 2.1% (mean = 1.1) for the 5-pixel condition. Although
the model-to-human threshold ratios were higher for all
of the spatial uncertainty models, only the 1-pixel model
was a significantly better fit to the human data than the
mouth-only model, with a mean RMSD of 0.18 log units
versus 0.22 log units for the mouth-only model
(t (7) = 3.855, p < .05). The 3- and 5-pixel spatial uncertain-
ty models were significantly worse than the mouth-only
Fig. 6. Contrast energy thresholds for the spatial and temporal uncertainty mo
are shown in the left panels, and models with temporal uncertainties of up to 1,
SD.
model, with mean RMSDs of 0.25 and 0.26 log units for
the 3- and 5-pixel models, respectively (t (7) = �3.010,
t (7) = �3.299, respectively; ps < .05).

In the temporal uncertainty simulations, the stimulus on
each trial was compared with templates that had been shift-
ed by up to a certain number of frames from the original
templates, which again were the mouth-only versions of
the word movies. As for the spatial uncertainty simula-
tions, the response on each trial was the word correspond-
ing to the template with the highest cross-correlation with
the stimulus. Temporal uncertainties of up to 1, 3, and 5
frames were simulated in the same manner as the spatial
uncertainties. To allow for temporal uncertainty in when
the word began, 10 additional zero-contrast frames were
added to the beginning and ending of the mouth-only word
movies. This resulted in an increase of stimulus size from
69 pixels wide · 54 pixels high · 42 frames to 69 pixels
wide · 54 pixels high · 62 frames.

Contrast energy thresholds in the temporal uncertainty
conditions were higher than those in the mouth-only condi-
tion, by an average of 1.4, 1.5, and 1.4 log units for the 1-,
3-, and 5-frame conditions, respectively (right panels of
Fig. 6). Model-to-human threshold ratios were similar in
del observers. Models with spatial uncertainties of up to 1, 3, and 5 pixels
3, and 5 frames are shown in the right panels. Error bars correspond to ±1



Fig. 7. Top 10% (left), 20% (middle), and 30% (right) highest contrast
pixels for the static frame from Talker F4’s movie shown on the right in
Fig. 5.

Fig. 8. Contrast energy thresholds for the top 10% (top panel), 20%
(middle panel), and 30% (bottom panel) top contrast model observers.
Error bars correspond to ±1 SD.
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the three conditions, ranging from 0.3% to 1.5%
(mean = 0.8%) in the 1-frame condition; from 0.3% to
1.7% (mean = 0.9%) in the 3-frame condition; and from
0.3% to 1.6% (mean = 0.8%) in the 5-frame condition.
However, the mouth-only model provided a significantly
better fit to the human data in terms of RMSD than the
1-frame temporal uncertainty condition, which had a mean
RMSD of 0.26 log units (t (7) = �2.869, p < .05), and the 3-
and 5-frame conditions did not differ significantly from the
mouth-only condition, with mean RMSDs of 0.22 and 0.23
log units, respectively (t (7) = �.654, t (7) = �.859, respec-
tively; ps < .05).

The results of simulations modeling spatial and tempo-
ral uncertainty suggest that in general, these two types of
uncertainty were not able to account for the variability in
performance across talkers exhibited by the human observ-
ers. Although all of the uncertainty models resulted in
higher contrast energy thresholds and model-to-human
threshold ratios than the mouth-only model, most of the
uncertainty models did not result in lower RMSDs. The
only exception was the 1-pixel spatial uncertainty model,
which produced a fit to the human data with a significantly
lower RMSD value than the mouth-only model. This sug-
gests that spatial uncertainty may have made a small con-
tribution to the pattern of variability across talkers.
However, an alternative explanation for why the 1-pixel
spatial uncertainty model provided a better fit to the
human data is that this model would have had a negative
impact on the model observer’s use of high spatial frequen-
cy information, such as edges between facial features that
might have differed slightly in position across templates.
That is, introducing uncertainty into the model in this fash-
ion has a similar effect as introducing spatial blur to the
templates, which would serve to reduce the contrast of
the highest spatial frequencies. It might be the case that
human observers were also unable to take advantage of
this high spatial frequency information (perhaps due to
spatial uncertainty or some other source of blur), and so
their pattern of thresholds was better described by a model
that could not use all of the high spatial frequency informa-
tion available in the stimulus.

4.3. Highest contrast pixels

Another factor that could have affected human perfor-
mance on the word-identification task was the relative sal-
ience of specific pixels in the word movies. To examine the
impact of pixel contrast on word-identification thresholds,
a model observer using the mouth-only templates was pre-
sented with stimuli that had been thresholded to include
information from only the highest contrast pixels. The low-
er contrast pixels were set to zero contrast in these stimuli,
whereas the highest contrast pixels kept their value. Three
highest-contrast pixel conditions were tested, using the top
10%, 20%, or 30% highest contrast pixels. Example still
frames from the three conditions are shown in Fig. 7.
The word-identification thresholds of this top contrast
observer were measured using Monte Carlo simulations
of 200 trials per talker, per condition.

Thresholds for the top contrast observers are shown in
Fig. 8. Thresholds could be obtained for all talkers in all
conditions except for talker M4 in the 10% top contrast
condition. As expected, model observer thresholds rose



Fig. 9. Contrast energy thresholds for observers BC and KK in the no,
low, and high external noise conditions. Error bars correspond to ±1 SD.
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for all three conditions when compared with the mouth-on-
ly model thresholds. Thresholds increased by anywhere
from 2 to 5 log units for the 10% top contrast condition
and by 2–3 log units for the 20% and 30% top contrast con-
ditions. In all three conditions, the model thresholds were
sometimes higher than the human thresholds obtained in
the whole-face condition. The model-to-human threshold
ratios were highly variable across talkers in all three
conditions, ranging from 1% to 5% to over 100% across
talkers within individual observers. Given that the
threshold ratios were far from constant, it is not surprising
that the RMSDs of the top-contrast model fits—with
means of 1.2, 0.70, and 0.73 log units for the 10%, 20%,
and 30% top contrast conditions, respectively—were
significantly higher than the mouth-only model RMSDs
(t (7) = �67.682, t (7) = �45.084, and t (7) = �60.223, for
the 10%, 20%, and 30% top contrast conditions, respective-
ly; ps < .05).

Although the model-to-human threshold ratios increased
a great deal when the model was restricted to using only the
highest contrast pixels, using only the highest contrast pixels
does not seem to be a likely human strategy in the word-
identification task because the pattern of model observer
thresholds provided a poor fit to the human thresholds.

4.3.1. Summary: Models of other perceptual strategies

Using the mouth-only stimuli, the perceptual factors of
spatial and temporal uncertainty, and attention to the high
contrast pixels only were simulated with model observers.
Although most of the models with spatial and temporal
uncertainty performed no differently from or were worse
than the mouth-only model in fitting the human data, the
model with 1 pixel of spatial uncertainty improved signifi-
cantly on the mouth-only model’s fit, suggesting that a
small amount of spatial uncertainty may contribute to
the variability in human thresholds across talkers. On the
other hand, models that were limited to using only the
top 10%, 20%, or 30% highest contrast pixels were signifi-
cantly worse than the mouth-only model, indicating that
paying attention to only the high contrast pixels was prob-
ably not a strategy used by the human observers.

4.4. The limiting effects of external and internal noise

In the main experiment, the level of external noise added
to the stimuli was relatively low compared to many psycho-
physical experiments aimed at measuring efficiency. We
chose to use a relatively low level of external noise in order
to insure that we could present our stimuli at contrast levels
that spanned observers’ contrast energy thresholds. How-
ever, given this low level of external noise, it is quite possi-
ble that internal noise posed a greater limit on performance
than the externally presented noise. Although unlikely, an
internal noise that does not share the statistical properties
of the externally added noise could potentially have differ-
ential effects on observers’ performance across the different
talker conditions.
One line of evidence against this idea is that the spatio-
temporal spectrum of internal additive noise has been
shown to be nearly white, with a small relative increase
in power at very low spatiotemporal frequencies (Pelli,
1990). However, we addressed these concerns experimen-
tally by having two of the observers who participated in
the original experiment run in two additional experimental
conditions: One of the additional conditions used stimuli
with no added external noise, and the other condition used
higher-contrast external noise than the main experiment.
The higher-contrast noise had contrast variance of 0.0625
and spectral density of 1.6719 · 10�5 deg2 at the viewing
distance of 130 cm. All other aspects of the experiment
were identical to those of the original experiment. We rea-
soned that if observers’ thresholds decreased under no-
noise conditions, it would be consistent with the idea that
internal noise was not limiting performance in the main
experiment. Similarly, if thresholds increased uniformly
across talkers in the high-noise condition, it would be con-
sistent with the idea internal noise did not produce the pat-
tern of results that we observed across talkers in the main
experiment.

The results of this experiment for both observers are
shown in Fig. 9. These data show that observers’ thresholds
in the no external noise condition were not substantially
different from those obtained in the original low noise
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condition, suggesting that the level of external noise used in
the main experiment may not have had a limiting effect on
performance. However, when the observers were tested in
the high external noise condition, their thresholds were
much higher than in the low external noise condition, indi-
cating that performance under these conditions was limited
by the external noise. Moreover, both observers showed
similar patterns of variability in thresholds across talkers
as in the high, low and zero external noise conditions.
The RMSD fit measuring the deviation of the high from
the low external noise thresholds across talkers for observ-
er BC was only 0.05 log units; for observer KK it was
somewhat higher, at 0.16 log units. Because the pattern
of variability across talkers was similar for low and high
external noise conditions, it is likely that the modeling
results reported above would also hold for higher external
noise conditions. Although further simulations would be
necessary to draw more definitive conclusions, a prelimin-
ary comparison of model fits to the low versus high exter-
nal noise conditions also provides support for the
generalizability of our results. For instance, for observer
BC, the whole face model RMSD was 0.19 log units
whether it was fit to the low or the high external noise
thresholds, and the residuals from the two model fits were
not significantly different from each other (t (7) < 0.0001,
p > .99). For observer KK, the whole face model RMSD
was 0.22 log units when fit to the low noise thresholds
and 0.23 log units when fit to the high noise thresholds,
and again the residuals from the two fits were not signifi-
cantly different (t (7) < 0.0001, p > .99). Similar results were
obtained for both observers using the other models.

5. Summary and conclusions

The primary goal of this study was to ascertain whether
cross-talker variability in visual-only speech perception is
due to differences in the information available across talk-
ers or to human perceptual strategies that are better suited
to some talkers than others. An ideal observer analysis of a
visual-only word identification task revealed variability in
the information available from the visual-only speech of
different talkers. This physical variability in available infor-
mation did not account for all of the cross-talker variability
found in human observer thresholds, however. Thus, a sec-
ondary goal of this study was to simulate some simple per-
ceptual strategies and inefficiencies that could account for
the additional variability in human performance across
talkers. A spatially restricted model observer that used
information only from the area around the talker’s mouth
provided a better description of the human pattern of
thresholds than either the ideal, whole face model or a
model restricted to using information from only the lower
half of the face. The better fit of the mouth-only model sug-
gests that the perceptual strategy of looking only at a talk-
er’s mouth when trying to identify visual-only words works
better for some talkers than others because of differences in
the availability of information around a talker’s mouth.
Aside from providing a better fit to our human observer
data, the mouth-only model is also consistent with eye
movement data suggesting that human observers tend to
look predominantly at a talker’s mouth when trying to
understand visual-only speech (Lansing & McConkie,
2003). It appears that human observers may primarily try
to ‘‘lipread’’ visual-only speech, whereas in fact also
attending to areas of the face other than the lips may be
a useful strategy for understanding some talkers.

In an attempt to account for some of the remaining
discrepancies between the patterns of thresholds produced
by the human observers and the mouth-only model
observer, several additional simple perceptual strategies
were simulated using the mouth-only movies. These simu-
lations included models of spatial and temporal uncertain-
ty and models of attention to the highest contrast pixels.
The only model that improved over the mouth-only mod-
el was the model with 1 pixel of spatial uncertainty. The
better fit of the spatial uncertainty model to the human
data suggested either that humans may have had a small
amount of uncertainty about the location of the stimulus,
or that they were not using the high spatial frequency
information that was blurred out by the small amount
of spatial uncertainty. The latter explanation is intuitively
appealing because it suggests that human observers were
not using minor variations in the position of the facial
features across templates. This variation is intrinsic to
our stimulus movies and seems on examination of the
movies to vary in magnitude across talkers, but it is in
general more likely to be artifactual than speech-related.
Previous research has also reported that human observers
tend not to use high spatial frequencies in auditory-visual
speech perception (Munhall, Kroos, Jozan, & Vatikiotis-
Bateson, 2004).

Although the simulations account for some of the var-
iability across talkers in human observer thresholds,
human efficiency is still quite low in this task. Several
factors that are likely to contribute to this low efficiency
include the use of dynamic Gaussian noise during stimu-
lus presentation, the optimal use of information at all
spatial and temporal frequencies by the ideal observer,
the ability of the ideal observer to attend to all stimulus
locations simultaneously, and the falloff of visual acuity
for non-foveal stimuli. The ideal observer integrates per-
fectly over time, so the use of uncorrelated dynamic
Gaussian white noise caused some of the noise to cancel
out and resulted in a higher quality signal for the ideal
observer (e.g., Gold, Bennett, & Sekuler, 1999). The ideal
observer is also able to use information at all spatial and
temporal frequencies, whereas the human observers may
selectively focus on particularly spatial or temporal fre-
quencies when perceiving visual speech (Grant & Seitz,
2000; Munhall et al., 2004). Similarly, the ideal observer
‘‘attends’’ simultaneously to all spatial locations, whereas
humans may shift their attention during stimulus presen-
tation. In addition, the stimuli subtended a large enough
visual angle that they may have been subject to an extra-
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foveal falloff of visual acuity (Banks, Sekuler, & Ander-
son, 1991), which would also cause human thresholds
to increase.

Despite the low overall levels of efficiency, the present
ideal observer analysis and follow-up simulations have
provided evidence that talker variability in visual-only
speech perception is due both to differences in the phys-
ical availability of information across talkers and to
human perceptual strategies that are better suited to
some talkers than others. In addition, this study has
demonstrated for the first time that the ideal observer
analysis technique can be successfully applied to the
study of visual speech perception. Ideal observer analysis
and other quantitative modeling techniques from psycho-
physics have great potential for adding to our basic
understanding of visual-only speech perception strategies
in normal-hearing individuals and expert ‘‘lipreaders.’’
Results from studies using these techniques could also
lead to clinical applications such as specific strategies
to improve visual-only speech perception in hearing-im-
paired individuals.
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