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Pattern recognition in correlated
and uncorrelated noise
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This study examined how correlated, or filtered, noise affected efficiency for recognizing two types of signal
patterns, Gabor patches and three-dimensional objects. In general, compared with the ideal observer, human
observers were most efficient at performing tasks in low-pass noise, followed by white noise; they were least
efficient in high-pass noise. Simulations demonstrated that contrast-dependent internal noise was likely to
have limited human performance in the high-pass conditions for both signal types. Classification images
showed that observers were likely adopting different strategies in the presence of low-pass versus white noise.
However, efficiencies were underpredicted by the linear classification images and asymmetries were present in
the classification subimages, indicating the influence of nonlinear processes. Response consistency analyses
indicated that lower contrast-dependent internal noise contributed somewhat to higher efficiencies in low-pass
noise for Gabor patches but not objects. Taken together, the results of these experiments suggest a complex
interaction among signals, external noise spectra, and internal noise in determining efficiency in correlated
and uncorrelated noise. © 2009 Optical Society of America
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. INTRODUCTION
deal observer analysis is a powerful technique that has
ed to remarkable insights about human vision, from ba-
ic physiology [1] to complex visual cognition [2]. How-
ver, the low human efficiencies, or ratios of ideal to hu-
an performance, for performing tasks involving complex

atterns, such as faces, objects, and letters [3–5], have
resented challenges to researchers who study vision us-
ng either traditional ideal observer analysis [6] or se-
uential ideal observer analysis, a modeling approach
hat gradually builds constraints into an otherwise-ideal
odel [7]. Another set of modeling approaches, which

aken together we might call the “ideal signal search” ap-
roach, stems from the observation that human observers
hould be most efficient at processing signals that are
ell matched to their inherent perceptual and cognitive

onstraints [8–11].
The research presented here was motivated by the in-

ight that in addition to the signal, the external noise
dded to the signal, and specifically the correlation struc-
ure of that noise, could also be chosen to match the con-
traints of human vision. Most psychophysical research
ses Gaussian white noise, which is uncorrelated in the
patial and frequency domains, and so relatively little is
nown about how the choice of an external noise spec-
rum affects human efficiencies and strategies for per-
orming visual pattern recognition tasks, especially when
he patterns to be recognized are complex. In addition,
revious research on visual pattern recognition in corre-
ated noise, much of it done in the context of medical im-
ging, has used only relatively simple patterns. There-
1084-7529/09/110B94-16/$15.00 © 2
ore, in order to begin to examine the interaction between
oise spectrum and signal type, this research investi-
ated efficiencies and human strategies for recognizing
wo types of patterns, or signal types. One of the types,
riented Gabor patches, is relatively simple and is com-
only used in psychophysical research, and the second

ype, three-dimensional objects, is more complex and is
ommonly encountered in everyday settings.

This work drew on two primary areas of the research
iterature. First, previous work on natural scene statistics
nformed the choice of the external noise spectra used in
his study. Natural scenes are generally accepted to have
mplitude spectra that fall off approximately as 1 / f, with
=spatial frequency [12–16]. In addition, certain proper-
ies of the visual system, in particular the logarithmic
pacing of frequency channels [17,18], make it well suited
or perceiving stimuli with 1 / f structure [19].

This work also drew on previous research on how the
tructure of noise interacts with visual perception. One
ey finding from this literature is that, for simple stimuli
uch as Gaussian bumps, humans are able to adjust their
trategy for performing a task based on the spatial fre-
uency content of noise [20–22]. In addition, humans are
ble to partially compensate for redundancies introduced
y the correlations in low-pass noise, meaning they can
erform at least certain tasks in low-pass noise in a
uasi-ideal way [23–27]. However, they are not able to
ompensate for the correlations in high-pass noise
23,24,28,29], perhaps because this type of noise correla-
ion is not commonly encountered in the visual environ-
ent [25].
009 Optical Society of America
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The research presented here examined how efficient
uman observers are at performing psychophysical tasks
ith different types of signals in white, low-pass, and
igh-pass noise. To address this question, thresholds were
stimated for human and ideal observers performing two
ifferent tasks in white noise, low-pass noise, and high-
ass noise. One of the tasks studied was Gabor patch ori-
ntation discrimination, which involves a signal that is lo-
alized in frequency space. The other task, three-
imensional object recognition, was chosen to be more
aturalistic and also because it involves signals that have
roadband spectra. Human and ideal observer thresholds
n each were compared to obtain a measurement of hu-

an efficiency, which allows the comparison of human
erformance across tasks and noise conditions.

. METHOD
. Observers
our observers (two female, two male) participated in the
xperiment. Two (MD and PM) were naïve to the purpose
f the experiment; BC and JG were authors. All had nor-
al or corrected-to-normal vision. The observers’ ages

anged from 18 to 35, with a mean age of 24.5. Each ob-
erver completed the experiment within approximately
our 1-hour sessions. As laboratory personnel, BC, JG,
nd PM volunteered their time; MD was compensated at
he rate of $10 per hour.

. Apparatus
timuli were displayed on a Sony Trinitron Multiscan
520 monitor controlled by an Apple G4 computer run-
ing Mac OS 9.2.2. The monitor had a resolution of
024�768 pixels, subtending 16.4° �12.4° of visual
ngle at the viewing distance of 130 cm. The frame rate
as set to 85 Hz. The experiment was conducted in the
ATLAB programming environment (version 5.2.1 for
acIntosh) using the Psychophysics Toolbox extensions

30,31].
A Minolta Luminance Meter LS-100 photometer was

sed to calibrate the monitor, and a 1792-element look-up
able was built from the calibration data in order to lin-
arize the display, as described by Tyler et al. [32]. Lumi-

ig. 1. Leftmost column, the two oriented Gabor patch signals; r
xperiment.
ance ranged between 0.7 and 103.6 cd/m2, with an aver-
ge luminance of 34.1 cd/m2. During the experiment, the
oftware selected appropriate luminance values for each
rial from the calibrated look-up tables and constructed
n 8-bit look-up table for the display using these lumi-
ance values.

. Signals
wo signal types were utilized in this experiment: Gabor
atches and two-dimensional projections of simple three-
imensional geometric objects. Each signal was 200
200 pixels, measuring 7.4 cm�7.4 cm and subtending

.3° �3.3° of visual angle at the viewing distance of
30 cm.
Gabor patches. Two Gabor patches that were identical

xcept for orientation were used in the orientation dis-
rimination task (leftmost column of Fig. 1). Both Gabor
atches had a spatial frequency of 1.5 cycles per degree
5 cycles per image at ±2 standard deviations) and a sine
hase of 0. One had an orientation of 45° and the other
ad an orientation of −45°.
Objects. Six different geometric objects were chosen for

he object-identification task: a cone, a cube, a cylinder, a
yramid with a square base, a sphere, and a square pyra-
idal frustum (a square pyramid truncated by a plane

arallel to its base; see Fig. 1). So as to minimize reliance
n size cues, the objects were constructed to have similar
eights and widths. For instance, the lengths of the sides
f the square bases were equal to the diameter of the cir-
ular bases. One two-dimensional projection was used for
ach object throughout the experiment. All of the objects
ad the same angle of rotation away from the observer.
otating the objects enhanced the illusion of three-
imensional depth.
All images were represented in contrast values such

hat the contrast �cxy� at pixel location �x ,y� in an image
as given by

cxy =
lxy − L

L
, �1�

ith L equal to the background luminance and lxy equal
o the pixel luminance. The integrated contrast of a given

ing columns, the six three-dimensional object signals used in the
emain
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mage was computing using root-mean-squared (RMS)
ontrast CRMS, defined as

CRMS =� 1

nm�
x=1

n

�
y=1

m

cxy
2 , �2�

here n is equal to the width of the image in pixels, m is
qual to the image’s height in pixels, and nm is the total
umber of pixels in the image. CRMS was then converted
o contrast energy E, which is expressed in degrees of vi-
ual angle squared �deg2� and is defined as

E = �CRMS�2nmapixel, �3�

here �apixel� is the area of a pixel in degrees of visual
ngle squared.

. Noise Conditions
n addition to a white-noise condition, two low-pass noise
onditions and two high-pass noise conditions were used
n this experiment. A condition with no external noise was
lso included so that the noise-masking technique of ex-
rapolating between white-noise and no-noise thresholds
ould be used to estimate the contrast-invariant compo-
ent of internal noise present in the visual system

33–38]. Thus, including the condition with no external
oise, six different noise conditions were tested for each
ype of signal.

In all of the conditions that utilized external noise, a
nique sample of noise with the same dimensions as the
ignals was generated on each trial and added to the tri-
l’s signal. The noise fields with filtered spectra were gen-
rated to have the same average power spectral density
contrast power per unit bandwidth) as the white noise.

White noise. In addition to being used in the white-
oise condition, white-noise fields served as the base for
ll filtered-noise fields, as noted above. The value for each
ixel in a white-noise field was obtained from a Gaussian
seudo-random number generator with a mean of 0 and a
ontrast variance of 0.05 (power spectral density=1.3
10−5 deg2). Each value in the noise matrix was treated

s a contrast value. The chosen variance for the noise en-
ured that at least 95% of the values in the distribution
ould fall within the linear contrast range of the noise
isplay when added to either the Gabor patch or the ob-
ect signals. Values that exceeded ±2 standard deviations
rom the mean were resampled to fall within the range of
isplayable contrast values.
Low-pass, 1 / f noise. The amplitude of the low-pass 1 / f

lter fell off as the inverse of spatial frequency. Each low-
ass 1 / f noise field was created by filtering all the fre-
uencies in the amplitude spectrum of a white-noise field
y a filter of the form g�fi�=1/ fi, where fi is equal to an
ndividual spatial frequency.

Low-pass, flipped f noise. The amplitude of the low-pass
ipped f noise filter fell off linearly with spatial frequency.
aking max�f� and min�f� as the maximum and minimum
requencies represented in the white-noise field and fi as
n individual frequency, the low-pass flipped f noise filter
as given by g�fi�=max�f�+min�f�− fi.
High-pass, flipped 1 / f noise. The amplitude of the high-

ass flipped 1 / f filter increased with the inverse of spatial
requency. Taking max�1 / f� and min�1 / f� as the maximum
nd minimum values, respectively, in the low-pass 1 / f
oise filter and fi as an individual frequency, the equation

or the high-pass flipped 1 / f filter was g�fi�=max�1/ ffilt�
min�1/ ffilt�−1/ fi.
High-pass, f noise. Each high-pass f noise field was cre-

ted by filtering each frequency fi in the amplitude spec-
rum of a white-noise field by a filter of the form g�fi�= fi,
hose amplitude increased linearly with spatial fre-
uency.
Examples of each type of noise and the amplitude spec-

rum of the associated filter are shown in Fig. 2. Each of
he sample filtered noise fields shown in Fig. 2 was cre-
ted using the sample pictured white-noise field as a
ase.

. Viewing Conditions
iewing was binocular through natural pupils, and a com-
ination forehead and chin rest stabilized the observer’s

ig. 2. Example noise fields and the associated filters for each of
he external noise conditions. Amplitude is not to scale but was
ormalized to have unit power on average for each spatial fre-
uency and orientation.
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ead. The monitor supplied the only source of illumina-
ion during the experiment.

. Procedure
he experiment consisted of two tasks: 1-of-2 Gabor patch
rientation identification and 1-of-6 object recognition.
ach of these tasks was presented with the five different
onditions of external noise and one condition with no
oise. Trials were blocked by task and by noise condition.
he order of the tasks was counterbalanced across observ-
rs, and the order of the noise conditions within each task
as randomized for each observer.
On each trial, observers were presented with a signal

lus an external noise field mask on a background of av-
rage luminance (or a signal alone in the no-noise condi-
ion). Signal duration was approximately 360 ms in both
asks. After signal presentation, the display was reset to
verage luminance and a selection screen with images of
he possible signals was presented. Observers used the
ouse to select the signal they thought had been pre-

ented. After a selection was made, auditory feedback in-
icated whether the response was correct, and the display
as reset to average luminance prior to the beginning of

he next trial.
In each condition, an adaptive staircase procedure ma-

ipulated the contrast energy of the signals across trials
ccording to the observer’s responses. For the Gabor
atch conditions, which had only two alternatives and
hus a chance performance rate of 50%, contrast energy
as manipulated by a staircase tracking the 71% correct
oint on the psychometric function with a 2-down, 1-up
ule. For the shape conditions, which had six alternatives
nd thus a guessing rate of 16.7%, the staircase tracked
he 50% correct point using a 1-down, 1-up rule. The
hreshold for each condition was estimated by fitting
eibull functions to the data, which consisted of a total of

50 trials. Threshold was defined as the contrast energy
ielding 71% correct responses for the Gabor patch condi-
ions and 55% correct responses for the shape conditions.

. Ideal Observer
he ideal observer for the 1-of-N and 1-of-2 identification

asks in white noise has been derived elsewhere [5,6]. On
ach trial, the ideal observer maximizes the likelihood of
he observed noisy stimulus given the possible noise-free
emplates that could have been presented, choosing the
emplate with the highest posterior probability given the
timulus [39] or equivalently in our case the template
hat maximizes the dot product (i.e., �i,jXijYij) with the
timulus [5]. Derivations for the spatial-domain ideal ob-
erver in correlated noise have also been published else-
here [25,29] (also cf. [40] for a derivation of a nearly

deal frequency domain observer in correlated noise), but
detailed derivation of the spatial-domain ideal observer

n correlated noise that reflects our procedures more pre-
isely than previous versions is presented in Appendix A.
he ideal observer in correlated noise uses a process
alled “prewhitening” prior to applying the same decision
ule used by the ideal observer in white noise. Prewhiten-
ng allows the ideal observer to account for the noise cor-
elations in the presented stimulus and thus assumes
hat the ideal observer knows the form of the filter used to
reate the noise. This is also a hidden assumption for
deal observers in white noise, a special case in which the
lter is all-pass and does not introduce correlations into
he noise [24,41]. Monte Carlo simulations of 5,000 trials
er condition were run to estimate ideal performance for
ach task in each of the external noise conditions.

. RESULTS AND DISCUSSION
he results of the experiment are summarized in Fig. 3.
he top two panels plot contrast energy thresholds for

our human observers, the mean across the human ob-
ervers, and the ideal observer in the Gabor (left panel)
nd object (right panel) tasks. The bottom two panels plot
he corresponding efficiencies for each task.

There are two very notable aspects to these data. First,
fficiencies for both kinds of stimuli were extremely low in
igh-pass noise—far lower than in either low-pass or
hite noise. Inspection of the thresholds shows that the

deal observer’s thresholds were exceptionally low in the
igh-pass conditions relative to the low-pass and white
onditions. This implies that more information was car-
ied by low spatial frequencies for both kinds of stimuli,
ince the ideal observer’s threshold is a direct reflection of
he intrinsic difficulty of a task. This result is self-evident
n the case of the Gabor stimuli, where the signals were
ocalized in the lower part of the frequency spectrum by
esign. However, it is a less obvious result in the case of
he objects, where energy (and information) is spread
cross the frequency spectrum. Apparently, information
n the object recognition task is also highly concentrated
n the lower spatial frequencies.

Second, efficiency was highest in the presence of a low-
ass noise for both kinds of stimuli. For Gabors, efficiency
as higher in both kinds of low-pass noise than in white
oise; for objects, efficiency was higher in flipped f noise
han in white noise. Although these may not appear to be
arge differences in Fig. 3, note that the y axis spans a to-
al of 5 log units. The mean efficiency in the Gabor task in
ipped f noise was �13%, compared to �5.5% in white
oise. For the objects, mean efficiency in flipped f noise
as �8.4%, compared with �4.1% in white noise. Thus,

ow-pass filtering the noise produced as much as a dou-
ling or more in efficiency relative to white-noise condi-
ions.

. Low Efficiencies in High-Pass Noise
lthough the large difference between ideal and human

hresholds accounts for why efficiency was so low in the
igh-pass conditions, it does not explain why human ob-
ervers were so inefficient in these conditions. One major
actor that always places an upper bound on human effi-
iency is internal noise. Human thresholds in the high-
ass noise conditions were in most cases quite similar to
hresholds measured without external noise. Levels of ex-
ernal noise that are sufficient to limit human perfor-
ance result in thresholds that are higher than if no ex-

ernal noise is present [38], suggesting that the amount of
xternal noise in the high-pass conditions may not have
een sufficient to limit human performance. Instead, hu-
an observers may have been limited by their own inter-
al noise in these high-pass conditions.
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To test this possibility, we conducted simulations for a
air of model observers that were ideal in all respects ex-
ept that each was limited by internal noise. The first
odel observer was limited by contrast-invariant internal
oise, or noise whose power spectral density is indepen-
ent of stimulus contrast. The power spectral density of
his type of internal noise in the human observers was es-
imated using the technique of external noise masking
33–38]. In external noise masking, the amount of
ontrast-invariant internal noise an observer has is quan-
ified by measuring contrast energy thresholds for the
ame task in varying amounts of external white noise.
he observer’s thresholds will increase linearly with the
ontrast of the external noise [43]. The observer’s
ontrast-invariant internal noise, or equivalent noise, is
efined to be equal to the amount of external white noise
hat doubles the observer’s no-noise threshold. This rela-
ionship can be quantified with the following equation:

E = k�Ne + Ni�, �4�

here E denotes the contrast energy threshold, k the ef-
ciency of the observer’s calculation in reaching decisions,
e the power spectral density of the external noise, and
i the power spectral density of the contrast-invariant in-

ig. 3. Top row, human, ideal observer, and noise-limited ideal
asks. Bottom row, corresponding efficiencies for the Gabor and ob
stimated by bootstrap simulations [42].
ernal noise, whose value is assumed to be independent of n
he value of Ne. If Ne=Ni, Equation (4) indicates that E
ill be doubled relative to when Ne=0. This linear rela-

ionship allows us to extrapolate the power of Ni from as
ew as two contrast energy thresholds measured in differ-
nt amounts of external white noise (including no noise).
ecause we measured contrast energy thresholds in no
xternal noise as well as at one level of white noise, we
ere able to estimate the amount of contrast-invariant
oise for each of our human observers in both tasks.
hus, the first model observer for each task included a
ontrast-invariant, Gaussian white internal noise source
hat was equal to the average of these estimates.

The second model observer had the same amount of
ontrast-invariant internal noise plus an additional
ource of contrast-dependent internal noise that was pro-
ortional to stimulus contrast, which at high external
oise levels is largely driven by the power of the external
oise rather than the contrast energy of the signal. Pre-
ious experiments have shown that the power of this
ontrast-dependent noise source is often similar to that of
he external white noise [44]. This situation is typically
escribed as having an internal-to-external noise ratio
I /E, or �i /�e) of 1. The contrast-dependent noise source
f our model observer was therefore a Gaussian white

er thresholds for the Gabor (left) and object (right) recognition
cognition tasks. Error bars correspond to ±1 standard deviation,
observ
ject re
oise with the same power spectral density as the exter-
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al Gaussian white noise that was either presented on
he trial or used to generate the trial’s filtered noise.

Monte Carlo simulations of 5,000 trials each were con-
ucted to measure the contrast energy thresholds of these
wo model observers in both tasks and all noise conditions
or which the ideal observer was measured. The model ob-
ervers were ideal except for the addition of the Gaussian
hite internal noise sources described above. The inter-
al noise source or sources, either contrast-invariant only
r contrast-invariant and contrast-dependent, were added
o the signal at the same time as the external noise source
nd thus before the prewhitening process. Although the
ocus of the internal noise sources in perceptual decision

aking has been a matter of some controversy [34,45,46],
dding the internal noise after prewhitening in our simu-
ations could not account for differences in efficiency ob-
erved across noise conditions, because this would be
quivalent to increasing the signal-to-noise ratio by the
ame amount at all spatial frequencies for all noise types
nd thus would merely reproduce the ideal observer’s ex-
ct pattern of thresholds but at a somewhat higher level.
y contrast, adding the internal noise before prewhiten-

ng allows for the possibility that internal noise could af-
ect the stimulus differently at different frequencies de-
ending on the external noise condition. The model
bservers were assumed to know the statistics of the in-
ernal noise and to use this information in calculating the
robability of the signal templates given the presented
timulus.

We expect thresholds and efficiencies for a good model
bserver to show the same pattern across noise conditions
s the human observers, even if the absolute levels are
ot quite the same as for the humans. This expectation is
ue to a critical assumption of ideal observer analysis
hat any information lost during processing cannot be re-
overed and so must affect the threshold [7].

The addition of contrast-invariant internal noise did
ot substantially affect thresholds for the model observer

imited by only contrast-invariant noise. Thus, we can
onclude that the amount of contrast-invariant internal
oise present in the visual systems of the human observ-
rs is not sufficient to explain their relatively low efficien-
ies in high-pass noise. However, the model limited by
oth contrast-invariant and contrast-dependent internal
oise was more successful at predicting human thresh-
lds and efficiencies. The thresholds and efficiencies for
his model are plotted along with the human and ideal ob-
erver data in each panel of Fig. 3. These data show that
he presence of contrast-dependent noise captures some,
ut not all, of the patterns of thresholds and efficiencies
bserved for the human observers in each task. That is,
fficiency in the white-noise condition is relatively overes-
imated and efficiency in the high-pass flipped 1 / f condi-
ion is relatively underestimated in both tasks. However,
he qualitative effect of relatively lower efficiencies in
igh-pass noise is captured by this model observer, indi-
ating that the presence of contrast-dependent noise may
e responsible for the relatively low efficiencies in high-
ass noise.

. Higher Efficiencies in Low-Pass than in White Noise
ffects of Strategy. We found that efficiency reached its
ighest point in low-pass noise for both Gabors and ob-
ects. In the Gabor task, efficiencies were higher for both
inds of low-pass noise than for white noise, whereas for
bjects efficiencies were highest for flipped f noise, fol-
owed by white noise and then 1 / f noise. One possible
ause for these two patterns of results is that there were
ifferential interactions between the perceptual system
nd the spectra of the signal and noise involved in each
ask. Although both classes of signal contained more in-
ormation at low than at high spatial frequencies, the ob-
ects had relatively broadband spectra, whereas the Ga-
or patches were much more localized in frequency space.
his explanation assumes a fixed strategy for each task

hat happened to be better suited to some combinations of
ignal and noise spectra than to others.

Alternatively, observers may have simply altered their
trategy based on the type of external noise used, and
hese changes in strategy were differentially effective
cross noise types. We explored this second possibility by
sing the response classification technique to estimate
he linear templates used by observers when recognizing
abor patches and objects in white, flipped f, or 1 / f noise.
he response classification technique is a noise-based sys-

em identification method that uses the correlation be-
ween the contrast of noise and an observer’s responses
cross a series of trials in order to infer the properties of
he linear template used by an observer when performing
task [47,48]. The result is a classification image, which

s a map that shows the relative weight given to each
ixel in an image by an observer over the course of an ex-
eriment. In the case of our Gabor and object recognition
asks, we used this technique to explore whether observ-
rs’ strategies (indexed by their classification images) var-
ed across noise conditions, and if so, whether the varia-
ions in strategy could predict the variations observed in
fficiency.

We measured classification images for a new set of ob-
ervers for both the Gabor and the object tasks in both
inds of low-pass noise and in white noise. The object task
as altered to have only two alternatives (the cube and

he frustrum) rather than the six used in the original ex-
eriment. The main reason for this is that the number of
rials required to measure classification images increases
ith the number of alternatives [49]. A task with two al-

ernatives is far more tractable in the context of
lassification-image analysis. Each observer participated
n a total of 10,000 trials per noise condition spread across

series of 1-h sessions. The order of the noise conditions
as randomly assigned for each observer. One observer

BC) participated in both the Gabor and the object tasks.
ll other aspects were identical to the original experi-
ent.
The method for calculating classification images in vi-

ual 1-of-2 identification tasks using uncorrelated (white)
oise as well as the relationship between the classifica-
ion image and the observer’s linear template have been
escribed elsewhere [47,48,50]. Briefly, the noise fields
rom the experiment are binned according to what signal
as presented (S1 or S2) and what the observer’s re-

ponse was (R1 or R2), resulting in four signal-response
ins (S1R1, S1R2, S2R1, and S2R2). The noise fields in
ach bin are then averaged and combined according to the
quation
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C = �S1R1 + S2R1� − �S1R2 + S2R2�, �5�

hich results in the classification image C. In addition to
his method of calculating classification images in white
oise for 1-of-2 identification tasks, Abbey and Eckstein
23,41] have derived a general method for calculating
lassification images in white or correlated noise for two-
lternative forced-choice tasks. Appendix B describes a
imilar derivation of classification images in correlated
oise, but for 1-of-2 identification tasks. Ideal classifica-
ion images in correlated noise can be computed directly
rom the ideal signal templates (the images are equiva-
ent to a difference image of the two templates) that cor-
espond to “prewhitened” versions of the templates for the
ame task in white noise.

Figure 4 shows the resulting efficiencies for each ob-
erver in each task. These data replicate the same pat-
erns found in the original experiment, validating the use
f two rather than six alternatives in the object task. Fig-
res 5 (Gabors) and 6 (objects) show the resulting classi-
cation images when the data are combined across all
hree observers within each task and noise condition. For
he Gabor classification images, the responses associated
ith the −45° signal were subtracted from the responses
ssociated with the +45° signal. Thus, the polarity of the
ixels from the +45° responses was preserved, whereas
he polarity of the pixels from the −45° responses was re-
ersed. For objects, the responses associated with the
rustum were subtracted from the responses associated
ith the cube, preserving the polarity of the pixels from

he cube responses and reversing the polarity of the pixels
rom the frustum responses. The top row of each figure
isplays the ideal classification images calculated from
he ideal templates. The middle row shows raw classifica-
ion images calculated from the combination of all the hu-
an data (i.e., 30,000 trials per condition). The bottom

ow displays the same images but smoothed with a 9�9
onvolution kernel (the matrix product of the vector
1 2 3 4 5 4 3 2 1] with itself transposed) so as to make it
asier to visualize the structure in the images.

Inspection of Figs. 5 and 6 shows that, for both Gabors
nd objects, the classification images in the low-pass con-
itions differ markedly from those of the ideal observer.

ig. 4. Efficiencies for the Gabor (left panel) and the 1-of-2 obje
ation data.
he differences between human and ideal are less pro-
ounced in the white-noise condition. In the case of the
abors, the human observers seem to be using a smaller
rea of the available stimulus than the ideal observer in
rder to make their decisions. The boundaries between
ark and light areas in the low-pass conditions do not ap-
ear as clear as those in the white-noise condition. In the
ase of the objects, the human low-pass classification im-
ges contain vertical curved continuous edges that seem
o correspond to the edges of the objects. The marked
ariation in the human classification images across differ-
nt noise conditions is consistent with the idea that the
uman observers were adjusting their strategy based on
he kind of noise that is present in the stimulus.

t panel) recognition tasks, computed from the response classifi-

ig. 5. Classification images calculated from the ideal observer
emplates (top row) and from the combined human observer data
middle and bottom rows) for the Gabor patch task in all three
oise conditions. Human images in the middle row were calcu-

ated from the raw data. For the images in the bottom row, the
aw data were smoothed with a 9�9 convolution kernel (the ma-
rix product of the vector [1 2 3 4 5 4 3 2 1] with itself trans-
osed) so as to make it easier to visualize the structure in the
mages.
ct (righ
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The classification analysis depends upon the assump-
ion that the observer uses a linear template to perform
he task. If not, it is difficult to predict the impact that
arious nonlinearities will have on the classification im-
ge weights. Thus, the variations in the human classifi-
ation images across noise conditions seen in Figs. 5 and 6
ould be due to the presence of one or more nonlinear pro-
esses. If an observer does in fact use a linear decision
ariable to perform a task, then their classification image,
ogether with information about the observer’s perfor-
ance and the power of the external noise, should allow

ne to accurately estimate the observer’s efficiency in the
ask [50]. Murray et al. [50] have derived an equation for
redicting an observer’s efficiency from their classifica-
ion image. Any deviations from linearity will result in ei-
her underprediction or overprediction of efficiency, de-
ending upon the nature of the nonlinearity. We used this
pproach to determine whether differences in the observ-
rs’ linear templates could explain the efficiency differ-
nces we observed across noise conditions. Following
urray et al., we calculated the ratio of the actual to the

redicted efficiency for each observer in each condition.
his ratio provides a convenient index that allows the
oodness of efficiency predictions to be compared across
onditions and observers. A ratio that is less than 1 indi-
ates overprediction of efficiency, whereas a ratio that is
reater than 1 indicates underprediction of efficiency. Any
eviation from a ratio of 1 indicates the presence of a non-
inear strategy or strategies. Although Murray et al.’s for-

ula for predicting efficiency based on a classification im-
ge was derived for the white-noise case, because our
ltered-noise images are calculated with prewhitened
oise fields, the formula is also applicable to these cases.
The ratios of actual to predicted efficiencies for the Ga-

or and object tasks are shown in Fig. 7. These data were

ig. 6. Classification images calculated from the ideal observer
emplates (top row) and from the combined human observer data
middle and bottom rows) for the object task in all three noise
onditions. Human images in the middle row were calculated
rom the raw data. For the images in the bottom row, the raw
ata were smoothed as described for Fig. 5.
omputed based on the combined classification images
nd average efficiencies in each condition. These data
how a very interesting difference between the white and
ow-pass noise conditions. That is, efficiency is just
lightly underpredicted in the presence of white noise,
hereas it is severely underpredicted in the low-pass
oise conditions. This underprediction is most apparent

n the Gabor task, where efficiency is underpredicted by
everal orders of magnitude in both low-pass conditions.
hese results indicate that nonlinear processes had an ef-

ect on the classification images and that the effects of the
onlinearities were markedly more severe in the presence
f low-pass noise.

The presence of significant nonlinearities makes the
ariations in the classification images across noise condi-
ions seen in Figs. 5 and 6 quite difficult to interpret.
onlinearities in an observer’s strategy can take many

orms and include nonlinear transformations of the
timulus, such as taking the variance or covariance [6,51]
r log luminance [50] of the pixel values; nonlinearities at
he decision level, such as response bias or guessing [50];
nd instances in which the observer has multiple tem-
lates associated with the same stimulus [3,5,52–55].
his last type of nonlinearity is thought to be relatively
ommon and includes uncertainty about certain aspects of
he stimulus, such as its spatial position or phase. There-
ore, in addition to assessing the linearity of our classifi-
ation images by comparing predicted and actual efficien-
ies for each condition, we also examined the
lassification subimages [55], or averaged images from
he signal-response bins used to calculate the classifica-
ion images, for evidence of nonlinearities involving mul-
iple templates.

For a linear observer, the subimages associated with a
articular response will contain a positive image of the
ignal corresponding to the response and a negative im-
ge of the other signal. The S1R1 and S2R1 bins are ex-
ected to look the same, because the same noise pixels
hould influence observers to respond “S1” regardless of

ig. 7. Actual/predicted efficiency ratios measured from the re-
ponse classification data in the Gabor and object tasks.
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hether S1 or S2 was actually presented. Likewise, the
1R2 and S2R2 bins are expected to look the same. If the
ins associated with a particular response category ex-
ibit asymmetry, this is a strong indication of a nonlinear
trategy that includes uncertainty about some aspect or
spects of the signal [41,56,57]. For example, it has been
hown that significant amounts of spatial uncertainty can
esult in a strong negative image of the presented signal
n error trials (bins S1R2 and S2R1). The accompanying
ositive images generated from error trials may be absent
ltogether [58]. Alternatively, if the performance level is
igh enough, the positive images may appear as a faint
aze, a situation known as “signal clamping” by analogy
ith a technique from neuroscience for mapping a cell’s

eceptive field [55]. The absent or hazy response image re-
ects averaging of the many spatially shifted templates
hat the observer has chosen over the presented signal.

Subimages for the combined, smoothed human data
nd for a simulation of the ideal observer in all three
oise conditions of the Gabor patch task are displayed in
igs. 8 (Gabors) and 9 (objects). In the case of the Gabors,
he human subimages show large asymmetries between
he S1R1 and S2R1 bins (here, the Signal=
45° /Response=+45° and Signal=−45° /Response=+45°
anels, respectively) and between the S1R2 and S2R2
ins (the Signal=+45° /Response=−45° and Signal=
45° /Response=−45° panels) in all three conditions. Spe-
ifically, in the white-noise-condition error bins (S1R2 and
2R1), the negative image associated with the presented
ignal is dominant, whereas the positive image associated
ith the response is not visible. The positive images in

he error bins of the 1 / f noise condition are also faint or
bsent, although the subimages are much fainter overall
n this condition despite much higher efficiencies than in
he white-noise condition. The flipped f condition’s subim-
ges are also faint and appear to display a different pat-
ern than the other two conditions, yet they still show
symmetries that are indicative of a nonlinear strategy.
n the case of the objects, all three sets of subimages show
arked asymmetries between the correct and the error

ins associated with each response, suggesting that the
umans may have used nonlinear strategies that involve
ncertainties about the signal. In addition, all three sets
how signs of signal clamping in that the negative image
f the presented signal tends to dominate the images in
he error bins.

Effects of Internal Noise. The measure used to predict
n observer’s efficiency from their classification image de-
ends mostly on the squared dot product of the observer’s
lassification image with the ideal observer’s template;
his squared dot product term is affected both by internal
oise and by the observer’s sampling efficiency, or the
imilarity of the observer’s linear template to the ideal
emplate [50]. Larger amounts of internal noise should
ower both predicted and actual efficiency, and so it is un-
ikely that differences in internal noise across conditions
re responsible for the large discrepancies observed be-
ween predicted and actual efficiencies. However, without
easuring internal noise in all three conditions, we can-
ot rule out the possibility that differences in internal
oise contributed to the results we observed across condi-
ions for both the actual efficiencies and the squared dot
roduct term that is the critical factor for predicting effi-
iencies.

The total amount of an observer’s internal noise can be
easured using a technique called response consistency

33,34,44,59]. The basic idea is this: If a physically iden-
ical stimulus is presented on multiple trials of an experi-
ent, a noise-free observer will always make the same re-

ponse to that stimulus, whereas observers with internal
oise will not be completely consistent in their responses.
ow consistent the observer is depends on the ratio of the

tandard deviation of the observer’s internal noise to the
tandard deviation of the external noise, or the �i /�e ratio
44]. Thus, an observer’s consistency in a double-pass
xperiment—one in which the first and second halves of
he experiment contain a sequence of physically identical
rials—can be used to estimate the observer’s total
mount of internal noise. The response consistency tech-
ique measures contrast-invariant and contrast-
ependent noise together; however, at high levels of exter-
al noise it is expected that any response inconsistency
easured will almost exclusively be due to contrast-

ependent noise [33,34].
We estimated the contribution of internal noise to the

ariations in efficiency across noise conditions using the
ouble-pass response consistency technique for two ob-
ervers in the Gabor task and two observers in the object
ask with each kind of noise (white, 1 / f, and flipped f).
he tasks were identical to those used when measuring

he classification images described above. To measure re-
ponse consistency, the observers completed one approxi-
ately hour-long session of 1,500 trials per noise condi-

ion for a total of three sessions per task. The first and
econd halves of each session consisted of physically iden-
ical trials presented in the same sequence. To achieve
his, a 2-down, 1-up staircase tracked the 71% point on
he observers’ psychometric functions and adjusted signal
ontrast for the first 750 trials of each session only. The
equence of the signals, contrast levels, and random num-
er generator seeds used to generate the noise fields on
ach trial during the first half of the experiment were
aved and used to present a physically identical sequence
f signals and noise fields during the second half. During
he second 750 trials, the observers still received accuracy
eedback on their responses; however, to ensure that
hese trials were physically identical to the first 750 tri-
ls, signal contrast was not adjusted according to the ob-
ervers’ responses. This meant that the feedback observ-
rs received during the second half of the experiment did
ot necessarily correspond to how the signal contrast was
djusted from trial to trial. However, this lack of corre-
pondence was not typically noticeable.

Thresholds and efficiencies (not shown) were quite
imilar to those reported with respect to the classification
mages. The amount of consistency displayed by each ob-
erver in each two-pass session can be visualized by plot-
ing the percent correct at each signal contrast level
ested as a function of the percent of the observer’s re-
ponses that were the same at that contrast level on the
wo passes. Plots of percent agreement versus percent
orrect for the three noise conditions are shown in Figs.
0 (Gabors) and 11 (objects). The line in each panel re-
ects the best fit of the data to the equation
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pc = m log10� pa

100� + 100, �6�

here pc is percent correct, pa is percent agreement, and
corresponds to the slope of the line [33,34]. m increases
s the ratio of internal to external noise standard devia-
ions ��i /�e� decreases, because a decrease in internal
oise results in higher overall percent agreement and
hus a steeper line. More specifically, in our tasks, m and
i /�e are related by the following equation [34]:
ig. 8. Classification subimages for human and simulated ideal observers in the Gabor patch task in the white (top panels), 1 / f (middle
anels), and flipped f (bottom panels) noise conditions.
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ig. 9. Classification subimages for human and simulated ideal observers in the object task in the white (top panels), 1 / f (middle pan-

ls), and flipped f (bottom panels) noise conditions.
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�i/�e = � + �1e−�1m + �2e−�2m, �7�

here �, �1, �2, �1, and �2 are fitted parameters and the
i /�e that corresponded to m was determined by fitting
his equation with values of m estimated through boot-
trap simulations for each observer in each condition [42].
qs. (6) and (7) are purely descriptive functions and have
o theoretical significance in this context.
The response consistency plots for the Gabor patch task

how a difference in slope and �i /�e across conditions for
oth observers. Specifically, the slope is steepest, and
i /�e lowest, for the 1 / f condition, less steep for flipped f
oise, and least steep for white noise. For the object task,
he response consistency plots do not seem to reveal such
triking differences across conditions, although the 1 / f
nd flipped f conditions again seem to have slightly
teeper slopes than the white noise condition for both ob-
ervers.

Taken together, the results of the response consistency
xperiment reveal interesting differences between the
wo tasks under study. Specifically, internal noise appears
o differ across noise conditions in the Gabor patch orien-
ation discrimination task but not in the object recogni-
ion task. In the Gabor patch task, given equally good lin-
ar templates for all three conditions and the levels of
nternal noise estimated for the human observers in this
xperiment, a model observer would predict the observed
attern of human efficiencies: 1 / f� flipped f�white. On
he other hand, even though internal noise is lower in the

ig. 10. Response consistency plots for observers JL (upper pa
middle), and flipped f (right) conditions.
ow-pass external-noise conditions than in the white-
oise condition, efficiency is dramatically underpredicted
y the classification images only for the low-pass condi-
ions in this task. Thus, we now have still stronger evi-
ence that the human observers’ linear template in the
ow-pass conditions is not as highly correlated with the
deal template as is the humans’ linear template in white
oise. Therefore, either human strategies are more pro-
ouncedly nonlinear in the low-pass noise conditions or
he specific nonlinearities have a greater effect on the
ow-pass linear template than the white-noise linear tem-
late. Regardless of the sorts of nonlinearities present or
heir effects, however, the lower levels of internal noise in
he 1 / f and flipped f conditions can help to increase actual
fficiencies only in those conditions.

As for the objects, the response consistency results en-
ble us to largely rule out internal noise as a cause for dif-
erences in efficiency across noise conditions in this task.
t is plausible that nonlinearities in the human strategies
or this task could account for some of the observed differ-
nces in actual efficiency across conditions. A more puz-
ling question is why internal noise would differ across
onditions for Gabors but not for objects. One hypothesis
s that internal noise might be mediated by individual
patial-frequency-tuned channels, so that each channel
nly contributes internal noise if it is being recruited by
he spatial frequency content of what is being perceived.
o, for instance, the Gabor patch is localized at a low fre-
uency, and in the low-pass conditions, the external noise

nd BC (lower panels) in the Gabor task in the white (left), 1 / f
nels) a
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lso contains most of its power at low frequencies and has
ery little power at higher frequencies. If channels con-
ribute internal noise only when the stimulus contains
elevant frequency content, then perhaps high-frequency-
uned channels do not contribute much noise in the low-
ass conditions of the Gabor patch task. This would pre-
ict lower amounts of internal noise in the low-pass noise
onditions than in the white-noise condition, in which
igher frequencies are better represented. The objects,
ecause they are relatively broadband, contain informa-
ion (such as edges) at high frequencies, meaning that
ven in low-pass noise the higher-frequency-tuned chan-
els would still be recruited and would still contribute in-
ernal noise. This would lead to relatively equal amounts
f internal noise across conditions in the object recogni-
ion task, as was found in the response consistency ex-
eriment. Spatial frequency channels that contribute in-
ernal noise individually have previously been modeled by
bbey and Barrett [28], who considered a channelized Ho-

elling observer with independent internal noise in each
hannel that was proportional to the variance of the im-
ge noise in that channel.

. SUMMARY AND CONCLUSIONS
he primary goal of this research was to measure human
fficiency for the recognition of spatial patterns varying in
omplexity in correlated and uncorrelated noise. We
ound that pattern recognition efficiency peaked in the

ig. 11. Response consistency plots for observers SK (upper pa
middle), and flipped f (right) conditions.
resence of low-pass flipped f noise, followed by either
ow-pass 1 / f noise (for Gabors) or white noise (for objects).
fficiency was far lower in the presence of high-pass noise

han in either low-pass or white noise. Simulations sug-
ested that the low efficiencies in high-pass noise are re-
ated to limitations imposed by internal contrast-
ependent noise. Possible sources of the variations in
fficiency across low-pass and white conditions were ex-
lored using response classification (to measure varia-
ions in strategy) and response consistency (to measure
ariations in internal noise). Although we did find
arked differences across classification images obtained

n white and low-pass noise, the variations in efficiency
ould not be explained by the observed differences in clas-
ification images. Instead, the classification images pro-
ided strong evidence of nonlinear components to the hu-
an observers’ strategies for all conditions, especially the

ow-pass conditions, in both tasks. The results of the re-
ponse consistency experiments suggest that variations in
nternal noise may have contributed somewhat to the dif-
erences in efficiency across noise conditions in the Gabor
ut not the object recognition task.
This research presents some important new insights

bout pattern recognition in uncorrelated noise. First, al-
hough others have suggested that internal noise may ex-
lain low efficiencies in high-pass noise [24], our results
ndicate that this is a plausible explanation and that the
imiting noise source is probably contrast dependent
ather than contrast invariant. Second, our results build

nd BC (lower panels) in the object task in the white (left), 1 / f
nels) a
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n previous literature showing that efficiency for the
ame task may vary depending on external noise spec-
rum by demonstrating that correlated noise, at least low-
ass noise, seems to also affect observer strategies, possi-
ly causing observers to use more pronouncedly nonlinear
trategies than white noise. Third, an observers’ levels of
nternal noise may also vary depending on the external
oise spectrum, even when the external noise spectra are
ontrolled to have the same total power. In practical
erms, the findings presented here should be taken as
autionary. Although efficiencies were discovered to be
igher in one or both types of low-pass noise than in white
oise, depending on the task, the serious nonlinearities
vident in the classification images make using low-pass
oise a questionable choice if one is assuming that the hu-
an observer’s strategy is linear. Certainly white noise

ends itself better to the well-developed techniques of vi-
ual psychophysics. In addition, given the current find-
ngs, it is unclear whether one can predict a priori that
uman observers will indeed perform more efficiently in a
iven type of low-pass noise than in white noise. Perfor-
ance appears to depend on the signal as well as the

oise spectrum, and one cannot always expect that, for
xample, humans are most efficient in 1 / f noise just be-
ause it is most similar to the structured “noise” inherent
n environmental statistics.

In conclusion, this investigation has demonstrated that
fficiencies, the levels of internal noise, and the linearity
f the human strategy for performing a task can be influ-
nced by the correlation structure of the external noise.
uture work will focus on developing our understanding
f how the interactions between signal and noise spectra
ffect efficiency.

PPENDIX A: PREWHITENING FOR AN
DEAL OBSERVER IN CORRELATED NOISE
e begin with a Gaussian white-noise field, NW, with
ean contrast 0 and variance �2. To create the desired

ype of correlated noise, NC, we filter NW by the desired
oise spectrum in the Fourier domain, maintaining the
hase of NW, as follows:

NC = F−1�filt · A�NW�ei��NW�	, �A1�

here F−1 is the inverse Fourier transform, filt the ampli-
ude spectrum of the filter, and A�NW�ei��NW� the Fourier
ransform of the white noise in polar form.

On each trial, we add a contrast-adjusted signal S to
he correlated noise field from Eq. (A1) to obtain the im-
ge I that will be displayed. For convenience in this deri-
ation we show this addition in the Fourier domain, re-
alling that additions in the spatial and Fourier domains
re equivalent:

I = S + NC = F−1�A�S�ei��S� + filt · A�NW�ei��NW�	, �A2�

ith A�S�ei��S� the Fourier transform of the signal S in
olar form.
The ideal observer must take into account not only the

ossible templates but also the statistics of the correlated
oise. This is most easily achieved through a process
alled “prewhitening,” which removes the noise correla-
ions and also adjusts the possible templates to preserve
he signal-to-noise ratio of the presented image I. Note
hat prewhitening therefore requires that the ideal ob-
erver know the form of the filter applied to produce the
oise correlations. Prewhitening is performed on the im-
ge I before submitting it to the decision rule. Essentially,
is reformulated from a signal plus a filtered noise field to
n inverse-filtered signal plus a Gaussian white-noise
eld by dividing out the magnitude spectrum of the filter
rom Eq. (A2):

IC−1 = F−1
A�S�

filt
ei��S� + filt ·

A�NW�

filt
ei��NW��

= F−1
A�S�

filt
ei��S� + A�NW�ei��NW�� . �A3�

he resulting prewhitened stimulus, IC−1, is equivalent to
n inverse-filtered signal plus the original Gaussian
hite-noise field. The phase spectrum of I is preserved in

C−1, and the signal-to-noise ratio is equal for the original
nd the prewhitened stimuli across spatial frequencies
nd orientations:

SNRIC−1 =

A�S�

filt

A�NW�
=

A�S�

filt · A�NW�
= SNRI. �A4�

o ensure that the prewhitened stimulus IC−1 preserves
he probability structure of the original image I relative
o the ideal template T, the ideal template must also be
nverse filtered. In other words, the appropriate compara-
or for IC−1 is not T but rather TC−1, the inverse-filtered
emplate.

Equation (A3) leaves us with a signal presented in
aussian white noise, and thus the ideal decision rule is

he same as in previously published derivations for 1-of-N
dentification tasks and their special case, 1-of-2 identifi-
ation [5,6].

PPENDIX B: CLASSIFICATION IMAGES IN
ORRELATED NOISE
or this derivation, we assume that the observer’s tem-
lates have equal energy and are adjusted in contrast to
atch the presented signal. Further, for simplicity, we as-

ume that the observer does not have an internal noise
ource.

After applying the prewhitening procedure derived in
ppendix A, we can write our decision variable, r:

r = �SC−1 + NW� · TC−1, �B1�

here SC−1 is the presented signal with the inverse filter
pplied, NW the original field of Gaussian white noise that
as filtered to make the presented correlated noise, and
C−1 the ideal prewhitened template (i.e., the white-noise
ignal template with the inverse filter applied). Here, the
ot indicates the dot product, i.e., X ·Y=�i,jXijYij.
If we make the substitutions T�=TC−1 and S�=SC−1, it

ecomes clear that r is equivalent to the formulation of
he decision variable in Murray et al. [48], except that
ere r does not include an internal noise source:
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r = �S� + NW� · T�. �B2�

hus, once we have completed the prewhitening step, we
an use the same methods for calculating classification
mages as described in Murray et al. [48]. In other words,
e can calculate the classification images in the usual
ay based on the original fields of white noise. However,

t should be noted that the estimated template T�=TC−1

eflects the prewhitening process and is not equivalent to
he white-noise signal template.
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