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Abstract Identification thresholds and the corresponding ef-
ficiencies (ideal/human thresholds) are typically computed by
collapsing data across an entire stimulus set within a given
task in order to obtain a “multiple-item” summary measure of
information use. However, some individual stimuli may be
processed more efficiently than others, and such differences
are not captured by conventional multiple-item threshold
measurements. Here, we develop and present a technique for
measuring “single-item” identification efficiencies. The
resulting measure describes the ability of the human observer
to make use of the information provided by a single stimulus
item within the context of the larger set of stimuli. We applied
this technique to the identification of 3-D rendered objects
(Exp. 1) and Roman alphabet letters (Exp. 2). Our results
showed that efficiency can vary markedly across stimuli with-
in a given task, demonstrating that single-item efficiency
measures can reveal important information that is lost by
conventional multiple-item efficiency measures.
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In psychophysics, a threshold in pattern perception tasks
such as detection and identification is often defined as the
minimal amount of stimulus energy necessary for an ob-
server to achieve a criterion level of performance, such as
75 % correct or a d′ of 1 (Cornsweet, 1970; Green &
Swets, 1966). In many psychophysical tasks, it is also

possible to measure the performance of a statistically
optimal or “ideal” observer (Geisler, 1989; Tanner &
Birdsall, 1958). The ideal observer makes optimal use of
all available stimulus information by performing a compu-
tation and using a decision rule that will maximize aver-
age accuracy. The comparison of human to ideal perfor-
mance allows one to measure the statistical efficiency with
which a human observer uses the information that is
available in a given task (Tanner & Birdsall, 1958).

Ideal-observer analysis has proven to be a useful tool for
separating the effects of psychological and physical factors on
the human ability to detect, discriminate, and identify different
kinds of patterns (e.g., Geisler, 2003). However, one short-
coming of this approach has been that, for tasks involving
multiple exemplars (e.g., detection of a set of faces or identi-
fication of a set of objects), thresholds and corresponding
efficiencies are computed by collapsing the data across the
entire set of stimuli. This approach assumes that all of the
stimuli being tested are processed with equal efficiency. For
some tasks, such as the detection of highly similar, localized
patterns, this may be a reasonable assumption. But it is less
clear how much the efficiency of information use will vary
across more complex and dissimilar patterns.

In this article, we attempt to address this shortcoming by
proposing a simple technique for measuring thresholds and
efficiencies for individual items. We begin by clarifying the
definition of efficiency within the ideal-observer approach,
and then outline the proposed technique. Next, we describe
two experiments in which we applied our technique to the
identification of two different classes of complex patterns: 3-D
computer-rendered objects and Roman alphabet letters. The
technique is explicated in great detail in the Method section of
Experiment 1 (especially in the procedure description), where
it is conveniently presented within a concrete experimental
context. We conclude by pointing out the advantages, and
limitations, of the new technique.
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Efficiency

Efficiency in any given task, η , is defined as the ratio of the
squared human to the squared ideal sensitivity (d′ )—that is

η ¼ d02human

d02ideal
: ð1Þ

An efficiency of 1 implies that the human observer is using
stimulus information optimally. An efficiency of less than 1
implies that, for the human processing system, information is
being lost somewhere between stimulus presentation and re-
sponse measurement (Tanner & Birdsall, 1958). Because
comparison of the human sensitivity to that of the ideal
observer controls for differences in the availability of stimulus
information, variations in efficiency across experimental con-
ditions imply variations in the ability of the human observer to
use the available information. In contrast, constant efficiency
implies that the ability to use the available information is
invariant, regardless of changes in performance (e.g., Banks,
Geisler & Bennett, 1987; Gold, Bennett & Sekuler, 1999).

It is often difficult to compute efficiency as described
above, because human sensitivity tends to be much lower than
ideal sensitivity at any given stimulus level. This will result in
ceiling performance for the ideal observer at any stimulus
level at which the human observer performs above chance.
The solution to this problem has typically been to choose a
criterion level of d′ (e.g., d′ = 1) or of percent correct (e.g.,
75 %) and to measure both human and ideal observer thresh-
olds at this level of performance (Pelli, 1981; Tanner &
Birdsall, 1958). Using this approach, efficiency is often
expressed as the ratio of ideal to human energy threshold, E ,
at a criterion level of performance—that is

η ¼ Eideal

Ehuman
: ð2Þ

Human efficiencies have been measured in this manner for
a wide range of detection, discrimination, and identification
tasks involving a variety of different stimuli, such as auditory
tones and noise bursts (e.g., Green, 1960), sinusoidal gratings
(e.g., Geisler, 1989), simple random dot patterns (e.g., Barlow,
1978) , objects and faces (e.g., Gold et al., 1999; Tjan, Braje,
Legge & Kersten, 1995), letters and words (e.g., Pelli, Burns,
Farell & Moore-Page, 2006; Tjan et al., 1995), and biological
motion (Gold, Tadin, Cook & Blake, 2008).

Thresholds and the corresponding efficiencies in experi-
ments such as those described above are typically measured
by combining data across all items to be identified and com-
puting a single summary threshold and the corresponding
efficiency. However, this kind of analysis ignores variations
in how efficiently a human observer makes use of information
when processing individual items. That is, efficiency could

vary quite dramatically across items in a set of patterns, but
this variation is lost in the standard measure of efficiency. This
complication makes it somewhat difficult to interpret varia-
tions in efficiency across tasks and stimuli, because individual
stimuli that are processed with relatively high or low efficien-
cy within a set (i.e., outliers) could lead to a distorted and
unrepresentative measure of efficiency. For example, Tjan
et al. (1995) tested how efficiently humans use visual infor-
mation to recognize simple 3-D objects. Computer-rendered
images of a wedge, a cone, a cylinder, and a pyramid were
presented as shaded objects, line drawings, small silhouettes,
or large silhouettes. The average calculated efficiencies were
3.28, 2.69, 7.84, and 4.51, respectively, for each of these
rendering conditions. However, from these data, one cannot
tell whether the variations in efficiency across the different
rendering conditions were produced by individual items with-
in each stimulus set that were processed with relatively greater
or lesser efficiency, or whether the efficiency measures are
representative of all of the items with each condition. This
same complication applies to most experiments that involve
the measurement of efficiencies for sets of dissimilar stimuli
(e.g., Gold et al., 1999; Liu, Knill & Kersten, 1995; Pelli et al.,
2006).

Outline of the proposed technique

In many psychophysical studies, the information necessary to
measure the contributions of individual items to overall effi-
ciency is simply not available, due to the experimental design.
Typical threshold-finding experiments often employ an adap-
tive staircase procedure, which finds an observer’s threshold
by systematically adjusting the stimuli across trials in order to
locate the stimulus level that yields a criterion level of perfor-
mance. In principle, it is possible to use a staircase for each
individual item and to measure the identification thresholds
for separate items. However, to obtain a given level of perfor-
mance, items that are easily detected (or identified) require a
lower signal-to-noise ratio than do items that are more difficult
to detect/identify. Consequently, if such a procedure were used
to adjust the contrast of each item individually, the amount of
contrast energy necessary to reach threshold performance
would become informative and might serve as a cue for an
item’s identity. For example, in a hypothetical letter identifi-
cation experiment, the amount of contrast energy required to
correctly identify the letter “A” might be smaller than that
required to identify the letter “B.” The observer can then
correctly identify the presented item on the basis of its contrast
energy, rather than its form.

Here, we develop a different approach for measuring
single-item efficiencies in identification tasks. The technique
is based on the method of constant stimuli, rather than a
staircase, and is therefore immune to the problem articulated
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above. For a given task (here, object recognition or letter
recognition), we use a staircase procedure to initially measure
a psychometric function for the entire set of n items (a “cal-
ibration” phase). We then use this information to generate a
fixed set of s stimulus levels that span the threshold range
across all n items. We present all n items for t trials at each of
the s stimulus levels, which are randomly intermixed through-
out testing. The same stimulus levels are used for all items, to
eliminate stimulus level as a possible cue to item identity. We
then fit individual-item psychometric functions and compute
corresponding thresholds for each stimulus by conditionalizing
the analysis according to item identity. Individual item effi-
ciencies are then computed by comparing the human and ideal
thresholds for each item.

We demonstrate this technique in two experiments. In the
first, we used a set of six 3-D rendered objects. In the second,
we used a complete set of 26 Roman alphabet letters.

Experiment 1: 3-D objects

Method

Observers Three observers (two male, one female) participat-
ed in the experiment. Two (B.F. and R.S.) were naïve to the
purpose of the experiment; A.E. was an author. All had normal
or corrected-to-normal vision. Each observer completed the
experiment within an approximately 1.5-h session.

Apparatus The stimuli were displayed on a Sony Trinitron
Multiscan G520 monitor controlled by an Apple G4 computer
running Mac OS 9.2.2. The monitor had a resolution of 1,024
× 768 pixels, subtending 16.4° × 12.4° of visual angle at the
viewing distance of 130 cm. The frame rate was set to 85 Hz.
The experiment was conducted in the MATLAB program-
ming environment using the Psychophysics Toolbox exten-
sions (Brainard, 1997). A Minolta Luminance Meter LS-100
photometer was used to calibrate the monitor, and a 1,792-
element look-up table was built from the calibration data in
order to linearize the display, as was described by Tyler, Chan,
Liu, McBride and Kontsevich (1992). Luminance ranged
between 0.7 and 103.6 cd/m2, with an average luminance of
34.1 cd/m2.

Stimuli Six different geometric objects were generated for the
experiment: a sphere, a cube, a pyramid with a square base, a
cylinder, a cone, and a square pyramidal frustum (a square
pyramid truncated by a plane parallel to its base; see Fig. 1).
To minimize reliance on size cues, the objects were construct-
ed to have similar heights and widths. For instance, the lengths
of the sides of the square bases were equal to the diameters of
the circular bases. One two-dimensional projection was used
for each object throughout the experiment. All of the objects

had the same angle of rotation away from the observer.
Rotating the objects enhanced the illusion of 3-D depth.

All images were represented in contrast values such that the
contrast (c i) at pixel location i in an image was given by

ci ¼ li−L
L

; ð3Þ

where L is the background luminance and l i is the pixel
luminance at location i in the image. The integrated contrast
of a given image was computed using the root-mean-squared
(RMS) contrast CRMS, a quantity that is proportional to stim-
ulus energy when squared (i.e., RMS2 contrast). CRMS is
defined as

CRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

p

X

i¼1

p

c2i

s

ð4Þ

where p is equal to the total number of image pixels.

Noise Gaussian white contrast noise (with contrast defined as
in Eq. 3) was added to each pixel of the signal shown on each
trial. The value for each pixel in the noise field added to the
signal was obtained from a Gaussian pseudorandom number
generator with a mean of 0 contrast and a variance of 0.0625
(noise spectral density of 1.67 × 10–5 deg2).

Procedure Viewing was binocular, and a combination
forehead- and chinrest stabilized the observer’s head. The
monitor supplied the only source of illumination during the
experiment. A 1-of-6 identification task was used to measure
performance, which was completed in one 1.5-h session. On
each trial, observers were presented with a signal plus an
external noise field mask on a background of average lumi-
nance. The display duration was approximately 500 ms. After
signal presentation, the display was reset to the average lumi-
nance, and a selection screen with images of the possible
signals was presented. Observers used the mouse to select
the signal that they thought had been presented. After a
selection was made, auditory feedback indicated whether the
response was correct, and the display was reset to the average
luminance prior to the beginning of the next trial.

The experiment consisted of two phases: an initial calibra-
tion phase, in which we used an adaptive staircase procedure,
and a second, testing phase, based on the method of constant
stimuli. The purpose of the initial calibration phase was to
quickly measure a threshold for the set of stimuli as a whole.
This threshold was then used as a starting point for generating
a series of fixed contrast levels to be used with the method of
constant stimuli in the second testing phase. Recall that adap-
tive staircases could not be used to estimate thresholds for
each individual signal because of the possibility that observers
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might make use of the signal contrast itself to identify the
signals.

At the beginning of the session, during the calibration
phase, by means of the staircase procedure we manipulated
the contrast of the signals across trials according to the ob-
server’s responses for 150 trials. The signal shown on each
trial was randomly chosen from the set of six possible signals.
The staircase tracked the 55 %-correct point on the psycho-
metric function with a 1-down, 1-up rule (six alternatives were
available, yielding a guessing rate of 16.7 % correct). A
contrast threshold was estimated by fitting a Weibull function
to the data. Threshold was defined as the RMS2 contrast level
corresponding to 55 % correct responses.

For the second, testing phase, the threshold measured dur-
ing calibration was used as an anchor for generating six fixed
contrast levels, equally spaced in log units ±1 log unit above
and below the calibration threshold. The testing phase in-
volved presenting each signal at each of the six contrast levels
for 20 trials, yielding a total of 720 trials. All of the signals and
contrast levels were randomly intermixed throughout the test-
ing phase. The resulting data were sorted conditional upon
signal identity, and Weibull functions were fit to the
data for each signal in order to estimate the individual
item thresholds. The reliability of each threshold was
estimated by carrying out bootstrap simulations (Efron
& Tibshirani, 1993). Specifically, we generated data for
200 simulated experiments by repeatedly drawing t ran-
dom trial samples with replacement and fitting psycho-
metric functions to each simulated set of data. We then
computed the mean and standard deviation of the
threshold estimates generated from this procedure.

Ideal observer The ideal decision rule for our tasks and stim-
uli can be derived using Bayes’s rule (Geisler, 2003; Gold
et al., 2008; Green & Swets, 1966; Tjan et al., 1995). For any
given signal type (shapes or letters), observers were asked to
determine the individual signal Sk (where k refers to the k th
signal in the set of n possible signals) that was most likely to
have appeared within the noisy stimulus data D . Note that for
our stimuli, both Sk and D were vectors of contrast values.
According to Bayes’s rule, the a posteriori probability of Sk

having been presented, given D , can be expressed as

P Sk Djð Þ ¼ P Skð ÞP D Skjð Þ
P Dð Þ: ð5Þ

For our tasks and stimuli, the prior probability of seeing
any given signal, P(Sk), and the normalizing factor P(D ) are
both constants, and thus can be removed without changing the
relative order of the probabilities. Thus, the ideal observer
would choose the signal that maximized P (D | Sk). In our
experiment, we used the method of constant stimuli to mea-
sure observers’ thresholds (staircases were only used to ini-
tially gauge roughly where the thresholds would be). Thus, the
stimulus could be set to s different contrast levels on each trial,
with equal probabilities. Given the conditions above, the ideal
observer must compute this probability for all s possible
contrast levels for each signal within the set and compute the
summed probability across contrast levels, resulting in the
following likelihood function:

P D Skjð Þ ¼
X

j¼1

s

∏
i¼1

p 1
ffiffiffiffiffiffiffiffiffiffi

2πσ2
p e−

1
2σ2

Di−Sijkð Þ2; ð6Þ

where p is the total number of pixels in the stimulus and σ is
the standard deviation of the Gaussian distribution fromwhich
the external noise was generated. The ideal decision rule
would be to choose the signal Sk that maximized this function.
Monte Carlo simulations of 6,000 trials per signal (30 contrast
levels and 200 trials per level) were run to measure the ideal
observer’s contrast threshold for each signal, as well as the
global threshold for the entire set of signals.

Results and discussion

The identification thresholds and efficiencies from
Experiment 1 are summarized in Fig. 2. The top panel shows
the individual-item identification thresholds for each of the
human observers, as well as that for the ideal observer. Several
interesting things can be noted about these data. First, the ideal
observer’s performance is not the same for all items. Instead,
two of the shapes (the pyramid and wedge) were particularly
difficult for the ideal observer, and one of the shapes (the
sphere) was particularly easy. Because the ideal observer’s
performance was solely determined by the relative amount of
information carried by each item, this means that the sphere
carried the most information of all of the items and that the
pyramid and wedge carried the least. It is worth emphasizing
that the information carried by any item in the set is not a

Fig. 1 Computer-rendered objects used in Experiment 1
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context-independent quantity, but rather is determined by how
discriminable it is from the other items in the set. That is, the
amount of information carried by an item is defined by its
physical dissimilarity to the rest of the items in the set, and is
therefore an entirely context-dependent measure (Tjan &
Legge, 1998).

Second, the human performance also varied markedly
across items and was surprisingly idiosyncratic. Although
two of the three observers (B.F. and R.S.) exhibited a pattern

that partially followed the ideal observer’s performance (both
had thresholds that were relatively high for the pyramid and
wedge, and low for the sphere), the third observer showed a
very different pattern of performance, with the pyramid,
wedge, and sphere being nearly equal (and lowest) in thresh-
old. Note that individual differences in thresholds cannot be
accounted for by differences in the physical availability of
information, and therefore must reflect differences in the
ability to make use of the available information.

The corresponding efficiencies (ideal/human thresholds)
are plotted in the bottom panel of Fig. 2. Computing efficiency
factors out the differences in information content across stim-
uli and leaves a pure measure of the ability to make use of the
information for each item. If the information content carried
by the stimuli were the sole determinant of the variations in
human thresholds, we would expect efficiency to be equal
across items. But, as could be expected on the basis of the
individual differences in thresholds, each observer exhibited
her or his own distinctive pattern of efficiency across items.
This result nicely demonstrates the utility of a single-item
efficiency analysis: Individual differences in efficiency across
the items in a set that would normally be obscured by a single,
summary measure of efficiency are easily detected when each
item is analyzed individually.

One potential concern about these data is that the variations
in efficiencies across items and observers could easily be the
result of response biases rather than true differences in pro-
cessing efficiency. If an observer were biased to choose a
particular item more frequently than others, this would erro-
neously inflate the percent correct for that item, as well as
decrease threshold and increase efficiency. Similarly, it would
reduce the percent correct, increase threshold, and decrease
efficiency for the other items in the set. For example, consider
the data from observer B.F. Constantly responding “cone”
(whether B.F. was certain or uncertain that a cone was actually
presented) would erroneously lead to the correct identification
of a cone in low contrast, consequently resulting in a low
identification threshold and high efficiency for this item.

To test whether response bias made a significant contribu-
tion to the observed efficiencies, we computed the correlation
between the proportions of trials on which an observer made a
particular item response and their corresponding efficiency for
that item. The data for all three observers are shown in the
right panel of Fig. 3, along with the best-fitting linear function.
We found a moderate correlation between response frequency
and efficiency (r = .56, p < .01), indicating that response
biases were in fact present in the data. Given this result, we
also computed the correlation between response frequency
and threshold for the ideal observer, to gauge whether we
might expect to find a systematic relationship between perfor-
mance and response frequency that was intrinsic to the task
and stimuli. Although the ideal observer’s response frequen-
cies varied far less across items that did the human observers’,

Fig. 2 Results of Experiment 1, presented on a log scale. The identifi-
cation thresholds (top panel) and efficiencies (bottom panel) for each
observer are presented separately for each of the stimulus items. Identi-
fication efficiencies were obtained by dividing the ideal observer thresh-
old by the corresponding human threshold. Error bars represent ±1
standard deviation, estimated through bootstrap simulations (see the text
for details)
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we found a highly significant relationship between ideal re-
sponse frequency and threshold (r = −.96, p < .00001). The
negative relationship between response frequency and thresh-
old for the ideal observer simply reflects the fact that threshold
is inversely related to performance. The high correlation be-
tween response frequency and threshold for the ideal observer
is most likely due to the fact that, for any set stimulus contrast
values, the ideal observer will on average make more correct
responses (and thus, more responses overall) to those items
that are more intrinsically discriminable from the other items
(i.e., the ones that have the lowest thresholds). Thus, the ideal-
observer analysis indicates that we might expect response
frequencies to vary across items in a systematic fashion for
our human observers, due to the demands of the task and the
experimental design. However, the ideal-observer analysis
also indicates that we would expect the range of variation in
response frequencies across items to be far narrower than we
found for our human observers.

To address the possible problem of response bias in our
data, we recalculated each observer’s threshold for each
item using a bias-free measure of sensitivity (d ′), rather
than percent correct performance (Green & Swets, 1966;
MacMillan & Creelman, 1991). In signal detection theory,
d′ is a bias-free measure of sensitivity that typically rep-
resents the perceptual separation between the internal re-
sponses to two stimuli, relative to their variances. To
compute d′ , one needs hit and false alarm rates. Here,
we defined hits as correct identifications (say, responding
“cone” when a cone was actually displayed) and false
alarms as incorrectly identifying another item as item k
(e.g., responding “cone” when a “cube” or “sphere” was
presented). In computing d′ in this way, we made an
implicit assumption that comparisons amongst items were
carried out along a single, unitary dimension (i.e., a single
dimension that corresponded to “similarity to item k”). We
computed d ′ in this fashion as a function of RMS

contrast, in order to generate psychometric functions that
would not be contaminated by response frequency. For
many tasks, d ′ has been found to vary approximately
linearly with RMS contrast (Green & Swets, 1966;
MacMillan & Creelman, 1991), and our data also followed
this trend. As such, we fitted linear psychometric func-
tions to each participant’s data for each individual item
and computed the contrast energy necessary to obtain a
d ′ of 1.

The results of this reanalysis are plotted in Fig. 4. These
data show that, even after correcting for stimulus complexity
and possible response biases, efficiency still varied markedly
across items and observers in our object recognition task.
These results show that despite the presence of response
biases, some items were in fact processed more efficiently
than others, and that this variation in efficiency across items
was highly idiosyncratic.

In Experiment 2, we decided to apply the same technique to
the identification of a different class of stimuli, one that was
highly overlearned and familiar: Roman alphabetic letters. We
used Bookman uppercase font, since it has been found to be
processed with relatively high efficiency, relative to other
fonts (Pelli et al., 2006).

Experiment 2: Roman letters

Method

The participants and method were the same as those described
in Experiment 1, with the following exceptions: The stimuli
were the full set of 26 uppercase Bookman letters. The letters
were all negative in contrast (i.e., darker than the background),
50 pixels tall, and placed in the center of a 128 × 128 pixel
background. Each signal was presented 20 times at each of six
contrast levels. With 26 letters, this yielded a total of 3,120
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trials, so that each observer participated in four 1.5-h sessions
instead of just one. Following the presentation of the signal,
observers used the mouse to select the signal that they thought
had been displayed.

Results and discussion

The results of Experiment 2 for uppercase Bookman font are
presented in Figs. 5 and 6. Figure 5 plots human efficiency

(right panel, computed using non-bias-corrected thresholds
for each observer) and ideal thresholds (left panel) as a func-
tion of the response proportions for each individual letter. As
with the objects, we found a significant correlation between
proportion of responses and both threshold for the ideal ob-
server (r = −.94, p < .00001) and efficiency for the human
observers (r = .81, p < .0001). As such, Fig. 6 plots only the
biased-corrected thresholds (top panel) and the corresponding
efficiencies (bottom panel). These data show that identifica-
tion thresholds variedmarkedly across letters, as they had with
the computer-rendered object displays. For example,
across observers, the letters “C” and “I” had relatively
low thresholds, as compared with the other letters,
whereas “E” and “K” had relatively high thresholds.
Note, however, that the ideal observer’s thresholds also
varied across letters, indicating that some letters in the
Bookman font carry more discriminative information
than others. For example, the ideal observer had a par-
ticularly low threshold for the letter “I.” When we used
the ideal observer’s thresholds to measure efficiency and
correct for the amount of information carried by each
letter, we observed a somewhat different pattern of re-
sults: Letters such as “O,” “S,” and “Y” now stood out
as being processed with relatively high efficiency, where-
as the letter “I” actually had the lowest overall efficiency
for two of the three observers. This result nicely illus-
trates how relatively better performance by a human
observer (in this case, with the letter “I”) does not
necessarily imply a better ability to use the available
information.

Inspection of Fig. 6 reveals that efficiency varied markedly
across items for each observer. To confirm the main effect of
item, we subjected the efficiency scores to a within-subjects
analysis of variance,1 and a significant effect of item (letter)
emerged, F (24, 48) = 2.221, p < .01, ηp

2 = .53.
A close examination of Fig. 6 also suggests that similar

patterns of relative between-item efficiencies might be present
across observers. Therefore, we calculated the correlations
between the efficiency scores across human observers, and
found moderate relationships for all of the human pairwise
comparisons. Table 1 shows the Spearman rank-order corre-
lation coefficients for efficiency across observers (note that
calculating correlations using Pearson’s product–moment cor-
relation coefficient yielded similar results). Thus, despite in-
dividual differences in performance, at least some of the cross-
item variability in efficiency could be explained by the items’
identities.

1 The subsequent analyses take into account the efficiency scores for 25
items, rather than the entire 26 letters. We had to discard the efficiency
scores for the letter “S,” since it was not available for observer B.F. due to
noisy data (for this item only).
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Fig. 5 Scatterplots showing the relationship between proportions of responses and either thresholds (for the ideal observer, left panel) or efficiencies (for
the human observers, right panel) in Experiment 2. The solid line in each plot corresponds to the least-squares linear fit

Fig. 6 Bias-corrected results from Experiment 2 (calculated at d ′ = 1; see the text for details)
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The fact that efficiency for each observer was not constant
across letters shows that physical similarity across letters
cannot entirely account for the variations in human thresholds.
However, we wished to explore whether physical similarity
(as indexed by the relative performance of the ideal observer
across letters) had any correlation at all with the patterns of
human thresholds across letters. To do this, we calculated
Spearman rank-order correlation between the thresholds of
each human observer and the ideal observer. We found
significant correlations for all three human observers
[for A.E., r = .64, p < .001; for B.F., r = .40, p <
.05; for R.S., r = .41, p < .05], showing that letter identifi-
cation by our human observers was at least partially predicted
by physical similarity across letters.

General discussion

In an identification task with several items, some stimuli may
be processed more efficiently than others, and such differ-
ences are not captured by the conventional multiple-item
threshold measurements. In this report, we have presented
and applied a novel technique for measuring “single-item”
identification efficiencies in object and letter identification
tasks. The resulting single-item efficiencies describe the abil-
ity of the human observer to make use of the information
provided by a single stimulus item, within the context of the
larger set of stimuli. Our results show that efficiency can vary
markedly across the stimuli within a given task (and across
observers), demonstrating that single-item efficiency mea-
sures can reveal important information that is lost by conven-
tional multiple-item efficiency measures.

So why, then, are certain items processed more efficiently
than others?Many possibilities exist, ranging from a variety of
low-level aspects of the stimuli, to higher-level aspects of the
object features and identities. Although an extensive investi-
gation of this issue is beyond the scope of this report, for the
purposes of illustration, we considered two possible factors
with respect to our letter identification data.

The first factor that we considered was the complexity of
the form of the letters. More specifically, we considered
perimetric complexity, which is defined as a letter’s inside–
outside perimeter, squared, divided by its ink area (Pelli et al.,

2006). When averaged across characters within an alphabet,
this measure has been shown to be highly negatively correlat-
ed with character identification efficiency across different
alphabets and fonts, with more-complex character sets gener-
ally producing lower efficiencies (Pelli et al., 2006). Thus, we
might expect that perimetric complexity might also be highly
negatively correlated with the efficiency of processing indi-
vidual characters within an alphabet. Figure 7 plots the effi-
ciency for each letter in our letter stimulus set for our three
observers as a function of perimetric complexity.2 We found a
small but significant negative correlation between efficiency
and perimetric complexity (r = −.2, p < .05), suggesting that
perimetric complexity may have played a role in determining
relative letter identification efficiency for our observers.

The second factor that we considered with respect to our
letter data was the relationship between efficiency and a
letter’s frequency of appearance in the English language.
That is, high-frequency letters (e.g., “E,” “T,” and “A”) may
be identified more efficiently than low-frequency letters (e.g.,
“X,” “Q,” and “Z”). Frequency-related effects of this sort have
been demonstrated in a variety of word recognition tasks, in
which participants have been found to respond more rapidly
and/or more accurately to more-common words than to less
frequently occurring words (e.g., Grainger, 1990). To explore
this possibility with our letter data, we calculated rank-order
correlations between the letter identification efficiencies mea-
sured for each of the observers in our study and the frequency
of letter occurrences in English (Lewand, 2000). We found no
significant relationship for two of our three observers (for

2 We computed the perimeter of each letter by identifying the edges
within the letter image (using the Canny (1986) method of edge detection)
and counting the number of pixels in which an edge occurred. We
computed ink area by counting the number of pixels over which the letter
image differed from the background of zero contrast. Perimetric com-
plexity was then defined as perimeter2/ink area.

Fig. 7 Letter identification efficiency, plotted as a function of perimetric
complexity (see the text for details). The solid line corresponds to the
least-squares linear fit

Table 1 Spearman rank-order correlation coefficients for efficiency
across observers

Observer A.E. B.F. R.S.

A.E. — r = .33* r = .30†

B.F. — r = .38*

R.S. —

† .05 < p < .10; * p < .05
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A.E., r = .08, n.s.; for B.F., r = −.06, n.s.), and only a
marginally significant relationship for the third observer
(R.S.: r = .33, p = .05). Thus, letter frequency does not appear
to be a reliable predictor of efficiency.

The analyses described above are not meant to provide an
exhaustive exploration of our individual efficiency data.
Rather, they are designed to demonstrate how commonly used
global threshold and efficiency measures can obscure poten-
tially interesting insights about how perceptual information is
being processed and represented. The technique and analyses
that we have described in this report offer a principled method
for going beyond global measures of threshold and efficiency
and dissecting human and ideal performance at a more micro-
scopic level.
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