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Five experiments explored short-term memory and incidental learning for random visual spatio-tempo-
ral sequences. In each experiment, human observers saw samples of 8 Hz temporally-modulated 1D or
2D contrast noise sequences whose members were either uncorrelated across an entire 1-s long stimulus
sequence, or comprised two frozen noise sequences that repeated identically between a stimulus’ first
and second 500 ms halves (‘‘Repeated’’ noise). Presented with randomly intermixed stimuli of both types,
observers judged whether each sequence repeated or not. Additionally, a particular exemplar of Repeated
noise (a frozen or ‘‘Fixed Repeated’’ noise) was interspersed multiple times within a block of trials. As pre-
viously shown with auditory frozen noise stimuli (Agus, Thorpe, & Pressnitzer, 2010) recognition perfor-
mance (d0) increased with successive presentations of a Fixed Repeated stimulus, and exceeded
performance with regular Repeated noise. However, unlike the case with auditory stimuli, learning of
random visual stimuli was slow and gradual, rather than fast and abrupt. Reverse correlation revealed
that contrasts occupying particular temporal positions within a sequence had disproportionately heavy
weight in observers’ judgments. A subsequent experiment suggested that this result arose from observ-
ers’ uncertainty about the temporal mid-point of the noise sequences. Additionally, discrimination per-
formance fell dramatically when a sequence of contrast values was repeated, but in reverse (‘‘mirror
image’’) order. This poor performance with temporal mirror images is strikingly different from vision’s
exquisite sensitivity to spatial mirror images.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Humans are gifted pattern-recognizers, blessed with stunning
ability to register, remember and exploit the similarities among se-
quences of sensory experiences. One especially useful approach to
studying pattern recognition is to probe observers’ ability to distin-
guish random stimulus sequences from random sequences onto
which some form of structure has been imposed. Because random
sequences comprise a homogenous pool of stimuli and can be de-
void of semantic content, they put the research focus squarely on
pattern-recognition’s early stages – sensory processing and mem-
ory for features that are challenging to identify and process cate-
gorically (Kaernbach, 2004).

Over half a century, multiple researchers have exploited one
simple but potentially informative strategy for imposing structure
on random stimuli: repetition of a stored (‘‘frozen’’) noise sample.
Among the earliest uses of frozen noise noise, Guttman and Julesz
(1963) showed that reiterating the same frozen auditory noise
sample multiple times in succession generated characteristic audi-
tory percepts, whose quality varied with the period of reiteration.
These observations were instrumental in Neisser’s (1967) postula-
tion of an echoic memory, a limited-duration auditory buffer. Later,
Kaernbach (2004) showed that even just a single repetition of fro-
zen noise could be discriminated from a non-frozen (that is, non-
repeating) stimulus of equal duration. Recently, Agus, Thorpe,
and Pressnitzer (2010) extended this work to explore the forma-
tion of auditory memory for sequences of random inputs. Their
observers tried to discriminate between (i) 1-s long random se-
quences of auditory noise (‘Random Noise’), and (ii) 1-s long se-
quences in which a single 500-ms auditory noise sequence was
repeated so that it was presented twice in succession with no
break between (‘Repeated Noise’). Observers‘ performance dis-
criminating between the two types of stimuli demonstrated their
ability to exploit short term auditory memory – memory for the
initial 500 ms of the stimulus – that had to be matched against
the immediately ensuing 500 ms of the stimulus. Observers had
good success in making this discrimination. Importantly, at ran-
dom times during a block of trials, Agus et al. inserted a trial on
which the very same Repeated Noise stimulus was recycled. At is-
sue was whether experience cumulated over multiple trials with
the same Repeated Noise stimulus would improve performance.
Despite the many other stimuli intervening between successive
presentations of a fixed Repeated Noise stimulus, performance
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with that stimulus did improve relative to randomly generated Re-
peated Noise stimuli. This improvement showed that observers not
only formed short term memories, which allowed successive
500 ms sequences on a trial to be compared, but also were simul-
taneously forming longer-term memories, which cumulated over
many trials. Moreover, Agus et al. showed that such learning of a
fixed Repeated Noise exemplar was retained over experimental
sessions, and was robust in the face of various acoustic
transformations.

Agus et al. demonstrated the auditory system’s remarkable abil-
ity to extract, store, and cumulate structure embedded in an arbi-
trary random sequence. But do these results reveal something
specific to the processing of auditory information, or do they in-
stead reflect some more generalized ability of human sensory sys-
tems to process arbitrary patterns, independent of the modality
from which the patterns are received? Motivated by Agus et al.‘s
findings, and by the long-standing controversy about parallels be-
tween visual and auditory memory (e.g., Cohen, Horowitz, & Wolfe,
2009; Julesz & Hirsch, 1972; Visscher et al., 2007), we set out to
examine vision’s ability to support both short term memory and
the longer term memory that Agus et al. demonstrated for audi-
tion. To do this, we adapted Agus et al.’s paradigm to explore
observers’ ability to discriminate and learn arbitrary visual noise
sequences that are generated by temporally modulating stimulus
contrast. We also applied reverse correlation analysis to the com-
plex, temporally modulated stimuli used in our experiments, in or-
der to identify in detail the strategies observers used when making
their judgments (Neri & Heeger, 2002; Simoncelli, 2003).
2. Experiment one

Experiment 1 was modeled after the first of Agus, Thorpe, and
Pressnitzer (2010)’s experiments, but used visual rather than audi-
tory stimuli. In our experiment, observers tried to detect the pres-
ence (or absence) of a repeated sequence of visual contrast noise.
Agus et al.’s noise stimuli were sampled and presented at 44 kHz,
a value about twice the upper limit of hearing of otologically-nor-
mal young adults, but several log units above the temporal resolu-
tion of human vision. The many differences between the properties
of vision and audition, including differences in temporal resolution,
challenge attempts to make fair comparisons between the two
(Visscher et al., 2007). In our experiments, we modulated the con-
trast of our visual stimuli across time as a step function at 8 Hz, a
value near the peak of the human temporal contrast sensitivity
function (Wilson, 1980). On each trial, the temporal modulation
produced a sequence of eight items, each �133 ms in duration.

On each trial, observers’ task was to compare the sequence of
the last four contrasts that they saw to the their memory of the se-
quence of the first four contrasts that they saw. We chose to use
stimulus sequences whose units were four items in length because
of evidence that visual short-term memory capacity has an upper
limit of about four items (Phillips, 1974; Vogel, Woodman, & Luck,
2001). Observers were tested with two different kinds of visual
noise: 1D noise, whose contrast was spatially uniform at any mo-
ment, but varied over time, at 8 Hz; and 2D noise, whose contrast
varied in both time and space. As explained below, the 2D contrast
variation in space produced a series of vertical stripes whose con-
trasts varied independently of one another over time.
2.1. Methods

2.1.1. Observers
Fourteen observers between the ages of 18 and 27 years partic-

ipated in the experiment for a stipend of $10 per experimental
session. All observers had normal or corrected to normal visual
acuity, and were naive to the purposes of the experiment.

2.1.2. Apparatus
Unless otherwise specified, the following conditions were main-

tained across all experiments. Stimuli were presented against a
uniform background of average luminance (19.03 cd/m2) on a
CRT monitor (Sony Trinitron UltraScan P780) at a resolution of
1024 � 768 pixels (33 � 24.5 cm) and refresh rate 75 Hz. Display
contrasts were linearized by means of a calibration-based lookup
table. Stimuli were generated and presented by an Apple iMac
computer running Matlab (version 7.7) and extensions from the
Psychophysics Toolbox (Brainard, 1997). Viewing was binocular
through natural pupils. A viewing distance of 57 cm was enforced
by means of a chin support. The computer display provided the
only source of illumination in the room.

2.1.3. Stimuli
Gaussian white contrast noise was used to generate the contrast

levels of all the stimuli in the experiment. Contrast was defined as
(Lpix � Lbg)/Lbg, where Lpix is the luminance of a given pixel, and Lbg

is the background luminance (19.03 cd/m2). Note that, according to
this definition, contrast values could be either positive or negative.
For our study, noise contrast levels were sampled from a normal
distribution with mean equal to zero contrast and a variance equal
to 0.2. Candidate samples more than ±2 standard deviations from
zero contrast were replaced by fresh samples, which restricted
the range of contrast increments and decrements comprising any
sequence. This algorithm for generating stimuli was intended to
clamp the distinctiveness of individual sequences so that it would
be difficult for observers to identify and explicitly recognize partic-
ular sequences.

Each stimulus sequence consisted of eight contrast levels pre-
sented in rapid succession to the same 4.1� � 4.1� (128 � 128 pix-
els) region of the display. Each contrast level in an entire eight-
item sequence was presented for 10 screen refreshes of the CRT
display (�133 ms), which meant that a complete eight-item se-
quence played out in 1067 ms.

As mentioned earlier, the contrast noise was distributed spa-
tially in two different ways within a 128 � 128 pixel stimulus
square. To generate what we will call 1D noise, for each of the eight
stimuli in a sequence, every pixel in a 128 � 128 pixel stimulus
square was assigned the same contrast value. Thus, a 1D noise se-
quence consisted of a series of eight contrast values (3 bits of infor-
mation). The other class of stimuli, which we will call 2D noise,
was generated by assigning a different noise sample to each col-
umn of pixels in any square stimulus in an eight-item sequence.
This produced, for each item in a sequence, 128 vertical stripes,
each �2 arcmin wide. The contrast levels of stripes within any item
were independent of one another; moreover, the contrast levels
varied independently over time, that is, across the eight items in
a stimulus sequence. Thus, a 2D noise stimulus comprised a se-
quence of 128 � 8 contrast samples, or 10 bits of information, con-
siderably more than in a sequence with our 1D stimuli.

For each kind of noise, 1D and 2D, we applied three different
manipulations to the images’ statistical structure over the eight
items in a sequence (see Fig. 1). The manipulations produced three
categories of stimuli, which we term Noise (N), Repeated Noise
(RN), and Fixed Repeated Noise (FixRN). For stimuli of category
N, the contrasts of the eight items comprising a sequence were
independent of one another. In the case of repeated noise (RN),
the first four frames (�533 ms) of the sequence repeated identi-
cally during the second half of the stimulus sequence, continuously
and with no break in between halves. Finally, in the case of frozen
or ‘fixed’ repeated noise (FixRN), a single randomly chosen RN
stimulus was generated anew for each block of trials and was used
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Fig. 1. Examples of Experiment 1’s three kinds of stimuli (Noise (N), Repeated Noise
(RN), and Fixed Repeated Noise (FixRN). Note that the second half of an RN stimulus
recycles the stimulus’ first half; note also that an entire sequence FixRN repeats
identically from one trial to a later trial. Top panel: 1D noise. Bottom panel: 2D
noise.
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throughout a block of trials whenever the experimental protocol
called for a FixRN stimulus. Importantly, observers were not in-
formed about the existence of a FixRN stimulus.

2.1.4. Design
All observers were tested with both 1D and 2D noise stimuli,

with the order of testing counterbalanced across observers. Each
observer completed four blocks of 200 trials per condition, making
a total of 1600 trials. Each block contained 100 N trials, 50 RN trials
and 50 FixRN trials. A unique FixRN stimulus was generated anew
for each block and for each observer. The order of trials within a
condition was randomly intermixed, with the constraint that two
FixRN trials could not appear in immediate succession. Together
with the relative proportions of the three stimulus categories, this
constraint separated successive occurrences of the same FixRN
stimulus by a mean of 3.9 trials (SD = 3.0) and a median of 2.4
trials.

2.1.5. Procedure
Before first being tested with either 1D or 2D stimuli, observers

had an opportunity to practice the task for 20 trials in which N and
RN stimuli of that type were presented. After these practice trials
were completed and before actual testing began, observers com-
pleted an initial 3-min period of adaptation to the uniform back-
ground luminance of the CRT.

Stimuli on each trial were presented in the center of the display.
Three hundred milliseconds after all eight items in a stimulus se-
quence had been presented, a message on the screen prompted
the observer for a key press to signal whether the sequence was
judged as ‘Repeated’ or ‘Not repeated’. Accuracy feedback was gi-
ven in the form of a high or low beep after each response. Observ-
ers were encouraged to rest after every 50 trials, but were asked to
remain seated throughout the experiment.

2.2. Results

2.2.1. Overall performance
We first evaluated observers’ overall task performance, comput-

ing d0 for with repeated noise (RN) and fixed repeated noise (FixRN)
stimuli. d0 was calculated separately for each 200 trial block for
each observer by taking the difference between z(hits) for either
RN or FixRN trials and z(false alarms) for N trials. A hit was defined
as a response of ‘‘Repeated’’ to either an RN or FixRN stimulus; a
false alarm was defined as a response of ‘‘Repeated’’ to an N stim-
ulus. Fig. 2 shows the mean d0 values for RN and FixRN trials, for
both 1D (left panel) and 2D (right panel) noise.

As those panels of the figure show, for both 1D and 2D noise,
overall performance was better for FixRN than for RN stimuli.
The performance advantage enjoyed by FixRN stimuli over their
RN counterparts show that observers were able to exploit the rep-
etition of a particular FixRN sequence that was repeated at random
times during a block of 200 trials. To assess the statistical reliability
of this result, we carried out a two-factor, repeated-measures AN-
OVA whose variables were two types of repeated noise (RN and
FixRN) and two levels of stimulus dimension (1D or 2D). The ANO-
VA confirmed that the effect of repeated noise type (RN vs. FixRN)
was highly significant (F(1,55) = 23.94, p < .0001). Moreover, the
dimensionality of the noise, 1D vs. 2D, significantly impacted per-
formance, with 1D stimuli consistently producing better perfor-
mance than 2D (F(1,55) = 22.69, p < .0001). There was no
significant interaction between type of repeated noise and noise
dimensionality type (F(1,55) = 0.39, p = 0.53).

2.2.2. Trial-wise performance
We further dissected observers’ learning of FixRN stimuli by

estimating the course of learning across trials within a block. Recall
that each observer was tested with a unique sample of FixRN noise
in each of 4 blocks of 200 trials, with each block containing 50 Fix-
RN and 50 RN trials. To trace the average rate of learning within a
block for both kinds of repeated noise, we computed performance
across blocks and observers separately for individual trials within
the 50 trial sequence for FixRN and RN stimuli. For example, per-
formance for FixRN trial #1 was computed by combining all of
the first FixRN trials across observers, regardless of whether the
randomization within a block put that first FixRN stimulus first
or somewhat later in the block. This produced a total of 56 trials
(4 blocks per observer � 14 observers), from which we computed
the proportion of trials on which observer correctly classified the
stimulus as FixRN (i.e., the proportion of ‘hits’). Performance for
the second occurrence of a FixRN stimulus computed by combining
all of the second FixRN trials across all observers and computing
the proportion of hits, etc. The same analysis was carried out for
the RN trials.

Fig. 3 shows results of this trial-wise analysis. The circular sym-
bols in each panel show percentage of hits for both RN trials (filled
circles) and FixRN trials (open circles), with 1D noise plotted in the
left panel and 2D noise plotted in the right panel. We also generated
smoothed versions of these data by averaging percentage of hits
within a 3-trial moving window (solid and dashed lines that roughly
follow the data points). The width of this rectangular window is
approximately equal to the median distance between successive
FixRN trials. Error bars on the smoothed data were generated
through bootstrap simulations, in which 200 simulated experi-
ments were carried out by sampling the original data with replace-
ment and computing the standard deviation across the resulting
group of 200 simulated data sets (Efron & Tibshirani, 1993).

The data show a very gradual, improvement in performance
over the trials within an block. Regression analysis of the raw data
revealed a significant linear trend for 1D FixRN noise (r = .57,
p < .0001), and a smaller, nearly significant linear trend for 2D Fix-
RN noise (r = .26, p = .07). No such significant trends were seen for
RN noise, either for its 1D form (r = .19, p = .20) or for its 2D form
(r = �.01, p = .98).

2.2.3. Reverse correlation analysis
We next considered whether observers had adopted a consis-

tent, distinct strategy as they tried to judge whether the second



Fig. 2. Mean values of d’ for Experiment 1 (panels A and B), Experiment 2 (panel C) and Experiment 3 (panel D). Panels A, C and D plot d0 for 1D noise and Panel B plots d0 for
2D noise The hit rates for RN stimuli and fixRN stimuli were both referenced to false alarm rates for N stimuli. Error bars represent ±1 s.e.m.

Fig. 3. Trial-wise performance in Experiment 1. In both figures, percentage of hits is plotted as a function of trial for both RN and FixRN stimuli. Left panel: 1D noise. Right
panel: 2D noise. Lines roughly following the data points in each panel were produced by smoothing the raw data (circles) with a moving rectangular window three trials wide.
Error bars represent ±1 s.d. for the smoothed data, estimated by bootstrap simulations. Straight lines correspond to the best fitting (least squares) linear fit to each set of raw
data.
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half of a sequence did or did not repeat the first half. For example,
did observers give equal weight to all the items in a sequence, or
did they give preferential weight to a subset of items? To answer
the question, we computed the correlation between the contrast
of the noise in each of the eight items in a sequence and the
observers’ responses across trials. This technique is often called
reverse correlation or response classification Marken and Sandusky
(1975). Such an analysis typically requires a large number of trials
to produce reliable correlations, and depends upon a variety of
factors, including the magnitude of the observer’s internal noise
and the number of dimensions along which the stimulus varies
(Murray, Bennett & Sekuler, 2002). In the case of our 2D noise stim-
uli, contrast varied along a relatively large number of dimensions
(128 columns � 8 stimulus items) relative to the total number of
trials in our data set (8400 trials collapsed across observers and
trial blocks). In the case of our 1D noise stimuli, contrast varied
along far fewer dimensions (8 components per sequence), making
the analysis of 1D noise much more suitable for reverse correla-
tion. Thus, we restricted our analysis to the 1D noise condition.

In order to calculate the reverse correlation for the eight com-
ponents in a 1D noise sequence, we regenerated vectors of the
eight contrast values that had been presented on all N and RN trials
for all observers. These vectors were then sorted into four possible
stimulus (s) – response (r) combinations (i.e., sNrN, sNrRN, sRNrN,
sRNrRN). We then averaged these vectors within each s-r combina-
tion, and computed a mean kernel m as

m ¼ ðlsRNrRN þ lsNrRNÞ � ðlsRNrN þ lsNrNÞ ð1Þ

We also computed the average squared deviation from the
mean kernel, which is the variance kernel v:

m ¼ ðr2
sRNrRN þ r2

sNrRNÞ � ðr2
sRNrN þ r2

sNrNÞ ð2Þ

The resulting mean and variance kernels are 8-element vectors,
whose values represent the relative weights that observers placed
on each of the eight components in a sequence. If there were no
systematic relationship between the contrast of items occupying
any of the eight ordinal positions in a sequence and observers’
judgments, the resulting kernel weights would be zero for all eight
positions. In the case of the mean kernel, values greater than 0
indicate a positive correlation between signed contrast and observ-
ers’ tendency to respond that the noise was repeated; values less
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than zero indicate a negative correlation between signed contrast
and observers’ tendency to respond that the noise was repeated.
For example, a value greater than 0 at position i in the mean kernel
indicates the observer was more likely to respond ‘repeated’ when
the luminance of the noise at position i in the noise sequences was
greater than the background and ‘not repeated’ when the lumi-
nance of the noise at position i in the noise sequences was less than
the background. For cases where the value of the mean kernel is
zero, the variance kernel has a relatively straightforward interpre-
tation: namely, a value greater than zero in the variance kernel
generally indicates high contrast in the noise at that point in the
stimulus sequence was more likely to make observers respond ‘re-
peated’ than ‘not repeated’, regardless of its polarity; a value less
than zero generally indicates high contrast in the noise was more
likely to make observers respond ‘not repeated’ than ‘repeated’.
For cases where the values of the mean kernel are non-zero, the
interpretation of the variance kernel is less clear, with departures
from zero indicating the possible presence of either compressive
or expansive nonlinearities within the system, depending upon
the polarities of the kernels (Neri, 2010).

The results of this analysis are plotted in Fig. 4a. In this plot, each
data point corresponds to the correlation estimate for an individual
item in the sequence. The mean kernel is plotted in filled symbols,
the variance kernel in open symbols. Error bars were estimated by
bootstrap simulations, in which 2000 simulated experiments were
carried out by sampling the complete original data set with replace-
ment and computing the standard deviation across the resulting
group of 2000 simulated kernels. We also ran an additional series
of 2000 simulated experiments in which the noise samples shown
on each trial were replaced by new random samples. These simula-
tions allowed us to generate a ±2 standard deviation confidence re-
gion around zero correlation. That is, values in this region fall
within ±2 standard deviations of what one would expect from a
purely randomly generated kernel. The confidence region for the
mean kernel is shown in light gray, the variance kernel in dark gray.

These data show something quite striking – that observers gave
preferential weight to the fourth and, to a somewhat lesser extent,
the eighth frame of a stimulus sequence. Note that these frames
correspond to the final frames in each half of a repeating noise se-
quence. The fact that correlation is positive in the mean kernel for
these items indicates that observers were more likely to respond
‘repeated’ when the luminance of the noise was brighter than the
Fig. 4. Mean (closed symbols) and variance (open symbols) kernels estimated by reve
Experiment 1. Panel B: kernels for Experiment 2. Error bars on symbols represent ±1 s.d., e
each kernel type, estimated by bootstrap simulations.
background at these key frames (and likewise, more likely to re-
spond ‘not repeated’ when the luminance of the noise was darker
than the background). Interestingly, the variance kernel shows a
negative peak at these key frames, indicating the possible presence
of compressive nonlinearities in processing. However, a proper
interpretation of the variance kernels would require the use of
more sophisticated system identification tools, which in turn
would require a much larger data set (Neri, 2010). Nevertheless,
both the mean and variance kernels indicate the 4th and 8th
frames of the stimulus had a particularly strong influence on
observers’ decisions in this task.

2.3. Discussion

Experiment 1 produced three major findings. First, as Fig. 2
showed, observers were able to learn the particular sequences (Fix-
RN stimuli) of randomly generated temporal and spatiotemporal
1D and 2D contrast noise sequences, even though successive pre-
sentations of a FixRN stimulus was randomly interspersed amongst
other stimuli that were drawn from the same distribution and gen-
erated in the same fashion. Second, performance with 1D se-
quences was significantly better than with 2D sequences, despite
the fact that 2D sequences had many more samples that could
potentially be compared across the two halves of a stimulus. Third,
as Fig. 3 confirmed, a trial-wise analysis showed that learning took
place gradually over a block of 200 trials – observers’ performance
significantly improved over the 50 repetitions of a FixRN stimulus.
And fourth, reverse correlation analysis revealed that observers
adopted the surprising strategy of preferentially weighting items
at the two endpoints of a repeated noise sequence (Fig. 4a).

The results of Experiment 1 raise some interesting questions.
First, the enhanced overall performance with a FixRN sequence rel-
ative to a set of RN sequences mirrors Agus et al.’a result of �3�
higher d0 for FixRN relative to RN samples in the auditory domain.
Our results show a less dramatic but certainly comparable effect
(�1.7� for 1D noise and �1.5� for 2D noise). Despite this overall
similarity, however, our trial-wise analysis suggests that the
underlying learning process in our visual memory task is substan-
tially different from what was reported for auditory memory.
Whereas performance in our task improved gradually with re-
peated exposures to a fixed sequence of visual noise, Agus et al.
found that performance improved sharply within just the first 10
rse correlation for 1D noise stimuli in Experiments 1 and 2. Panel A: kernels for
stimated by bootstrap simulations. Gray bands denote ±2 s.d. confidence regions for
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exposures to a fixed repeating auditory noise sample, with little or
no improvement thereafter. One possible reason for this difference
between audition and vision may lie in the relatively low dimen-
sionality of our noise samples (both 1D and 2D), compared to
dimensionality of Agus et al.’s 44.1 kHz samples of auditory noise.
Such low dimensional stimuli are far more likely to produce a het-
erogenous range of individual FixRN sequences that spanned the
range from particularly easy to particularly difficult to encode in
memory. We address this possibility in Experiment 2, which tests
observers with a common set of FixRN stimuli that yielded partic-
ularly good performance in Experiment 1.

Second, how robust is the visual system to various systematic
transformations of the repeated portion of a noise sequence? One
such transformation that has been explored extensively in the do-
main of spatial vision is mirror symmetry (e.g., Wagemans, 1995).
In Experiment 3, we apply a mirror symmetrical transformation to
the domain of temporal visual memory, testing whether observers
can perform our repeated noise task with temporally mirror sym-
metric sequences.

Third, how durable is the learning that takes place for an indi-
vidual FixRN sample in a single block of 200 trials? In Experiment
4, we take an initial step towards addressing this question, by test-
ing observers with two identical trial-by-trial stimulus sequences
occurring in immediate succession or separated by a 24 h period.

Fourth, the results of our reverse correlation analysis (Fig. 4a)
raise the question of why observers preferentially weighted the
fourth and, to a lesser degree, the eighth frames of a stimulus se-
quence? One possibility is that the profile revealed by the reverse
correlation analysis simply reflects a natural, default strategy that
observers automatically employ when searching for a temporally
periodic pattern in a visual noise sequence. An alternative possibil-
ity is that observers chose this strategy to deal with the effects of
intrinsic temporal uncertainty, which is a limiting factor in many
temporally-based visual tasks (Cohn & Lasley, 1986). The presence
of intrinsic temporal uncertainty would challenge an observer’s
ability to localize the temporal mid-point of a repeated noise sam-
ple, and therefore might lead observers to find and adopt a strategy
that explicitly attempts to localize this critical point in the stimu-
lus sequence. In Experiment 5, we test this possibility by inserting
a variable duration temporal gap between the first and second
halves of the stimulus sequence.
3. Experiment two

In Experiment 2 we were interested in exploring whether the
difference between the gradual trial-by-trial improvements seen
in Experiment 1 differed from the abrupt learning observed by
Agus, Thorpe, and Pressnitzer (2010). This difference in learning
may have been seen because the individual FixRN stimuli in Exper-
iment 1 varied in the ease with which they could be encoded. To
test this possibility, we first reanalyzed the 1D noise data from
Experiment 1 by computing d0 for each individual experimental
block for each observer. The result of this analysis is shown as a
scatterplot in Fig. 5a. These data confirm that there was in fact a
wide range of d0 values for the FixRN stimuli, and that this range
was far wider than for the RN stimuli. Although individual observ-
ers’ d0 values for RN and FixRN sequences were significantly corre-
lated (r = .39, p < .01), the fact that d0 for FixRN varied much more
than RN suggests that variation in FixRN performance may not have
been entirely due to variation in observers’ inherent sensitivities
and the specific characteristics of the FixRN stimulus may have ex-
erted some influence on performance. In order to identify what as-
pect of the FixRN stimuli led to better performance, we regenerated
and sorted all of the FixRN exemplars used in Experiment 1 accord-
ing to their corresponding d0 (Fig. 5c). Close inspection of this figure
suggests that, in general, the contrast values of the FixRN exemplars
on the higher end of the d0 range tend to be more positive than neg-
ative in contrast, whereas the contrast values of the FixRN exem-
plars on the lower end of the d0 distribution tend to have more of
an even distribution of positive and negative contrast values. We
tested this observation by computing the total summed contrast
(i.e., the summed signed contrast values across frames) for each
exemplar. These data are plotted in Fig. 5b, as a function of their
corresponding d0. The closed symbols correspond to exemplars
where d0 was less than 1 (low d0), and the open symbols where d0

was 1 or greater (high d0). These data show that the total summed
contrasts of the exemplars for low d0s were distributed around a va-
lue that was shifted far lower than the exemplars for the high d0s.
The average total summed contrasts for the low and high d0s were
�0.23 and 1.19, respectively. An independent samples t-test (two-
tailed) showed that the difference between the mean low and high
d0 total summed contrast was highly significant (t(54) = �3.72,
p < .001) and there was no significant difference between the vari-
ances of the two distributions (F(29,25) = 1.01, p = .49).

The outcome of these initial analyses led us to test whether the
gradual trial-wise changes in performance seen in Experiment 1
were caused by the heterogeneity of its FixRN samples. If the grad-
ual trial-wise changes in performance found in Experiment 1 re-
sulted from variability in the ‘goodness’ of the FixRN samples,
testing observers with only those FixRN samples that produced
the best task performance in Experiment 1 could develop a clearer
picture of the true underlying trial-by-trial learning effects. For this
purpose, we decided to focus on a limited number of FixRN exem-
plars, testing a new set of observers’ performance with a common
set of FixRN stimuli, which produced high performance in Experi-
ment 1. So, in each block of trials in Experiment 2, presentations of
one of those select FixRN stimuli were randomly intermixed with
newly-generated N and and RN stimuli.

3.1. Methods

3.1.1. Observers
Twelve observers over the age of 18 years participated; none

had served in Experiment 1. All had normal or corrected to normal
visual acuity and were naive to the purposes of the experiment.

3.1.2. Stimuli, procedure and design
The stimuli and procedure were identical to those described in

Experiment 1 for the 1D noise condition, with one exception.
Rather than randomly generating a novel FixRN stimulus for each
experimental block and observer, FixRN stimuli were restricted
to the four FixRN stimuli that had yielded the highest overall per-
formance in Experiment 1 (i.e., the four sequences shown at the
rightmost end of Fig. 5c). All observers were tested with the same
four FixRN stimuli, but in different orders of blocks, which were
randomized for each observer according to a 4 � 4 Latin square
(replicated 3 times to accommodate all 12 observers).

3.2. Results

Fig. 2c presents the overall mean d0 values for 1D RN and 1D Fix-
RN stimuli. These values were computed as in Experiment 1, with
hit rates for RN or FixRN stimuli each evaluated relative to the false
alarm rates for the intermingled N stimuli. Note the strong similar-
ity of these results to ones obtained with 1D stimuli in Experiment
1 (Fig. 2a). Although the absolute d0 values were slightly higher for
both RN and FixRN than in Experiment 1, the ratio of d0 values for
FixRN and RN was nearly identical (a factor of �1.6). Just as in the
previous experiment, the difference between FixRN and RN d0 val-
ues in Experiment 2 was highly significant (t(47) = 3.33, p < .001).
Thus, the overall learning effect seen in Experiment 1 was



Fig. 5. (A) d0 for the FixRN stimuli for individual observers in Experiment 1, plotted as a function of d0 for RN stimuli; (B) total summed contrast (signed) for the FixRN stimuli
shown to individual observers in Experiment 1, plotted as a function of d0; (C) the FixRN stimuli shown to observers in Experiment 1, sorted in order of d0 . Each pixel
corresponds to a single frame, with time progressing from top to bottom.
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replicated when all observers were tested with the same four Fix-
RN sequences that previously promoted particularly good FixRN
performance.

Fig. 6a plots the mean trial-wise performance for FixRN and RN
sequences. The height and slopes of the two curves are similar to
those obtained with 1D noise in Experiment 1 (lefthand panel of
Fig. 3). Fig. 4b plots the results of a reverse correlation analysis,
performed in the same fashion as described in Experiment 1. As be-
fore, the reverse correlation analysis suggests that observers as-
signed disproportionate weight to items that occupied the 4th
and 8th ordinal positions in the stimulus sequence.
3.3. Discussion

Taken together, the results of Experiment 2 indicate that two of
the effects found in Experiment 1 – the gradual rather than abrupt
trial-wise learning, and the disproportionate weighting of the 4th
and 8th stimulus items in a sequence – were not due to the use
of a large, heterogenous sample of of FixRN stimuli. Similar results
were obtained in both experiments, even though in Experiment 1
observers were given unique FixRN samples for each block of trials,
while in Experiment 2 a common set of four FixRN samples were
recycled across all observers.

One somewhat puzzling aspect of these data that is worth point-
ing out is the fact that average performance with the FixRN stimuli
was nearly identical to what was obtained in Experiment 1, despite
the fact that we used a restricted set of FixRN sequences, all of
which yielded exceptionally high performance in Experiment 1.
One possible explanation this surprising result is that the high level
of performance obtained in Experiment 1 with these four FixRN
exemplars resulted not solely from some special qualities of the
exemplars themselves, but also from the extraordinary perfor-
mance of observers in Experiment 1 who happened to be assigned
those particular exemplars. We looked more closely at this possibil-
ity by plotting the sensitivities of individual observers for each of
the four FixRN samples used in Experiment 2 (Fig. 6b). In this graph,
individual observer’s data are represented as numerals ranging
from 1 to 12. Results from each of the four FixRN stimuli are plotted
in a separate column. The average sensitivity across observers for
each FixRN sample is also shown in each column, by the filled sym-
bols. These data show that there was substantial variability among
mean d0 values associated with different FixRN sequence, and that
there was also substantial variability in observers’ sensitivity with-
in each FixRN sequence. Also note that each individual observer’s
sensitivities tended to be consistent with respect to the sensitivities
of the other observers. For example, observer 10 consistently had
the highest sensitivities across all of the FixRN samples, whereas
observers 5 and 7 tended to have the lowest sensitivities. These pat-
terns reveal that there are were both stimulus-based and observer-
based sources of variability present in our data. They also strongly
suggest that the exceptional performance found with these four
FixRN samples in Experiment 1 was probably not caused by the par-
ticular qualities of the FixRN samples, but rather resulted from indi-
vidual differences in observer sensitivities.

Thus, the results of Experiment 2 rule out the possibility that
the trial-wise learning and disproportionate weighting of particu-
lar items in a sequence, which were seen in Experiment 1, were
caused by that experiment’s large, heterogenous set of FixRN sam-
ples. We revisit one of these effects (the disproportionate weight-
ing of the 4th and 8th stimulus frames) in Experiment 5.



Fig. 6. (A) Trial-wise performance in Experiment 2. Percentage of hits is plotted as a function of trial for both RN and FixRN stimuli. Lines roughly following the data points
were produced by smoothing the raw data (circles) with a three-trial-wide roving window. Error bars represent ±1 s.d. for the smoothed data, estimated by bootstrap
simulations. Straight lines correspond to the best fitting (least squares) linear fit to each set of raw data. (B) Individual observer d0s for each of the four FixRN exemplars used
in Experiment 2. Symbol numbers correspond to individual observers. Filled symbols correspond to the mean across observers for each FixRN sample. Error bars represent ±1
s.e.m.
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4. Experiment three

In the preceding two experiments, the notion of ‘repetition’ was
used in the strictest possible sense – an exact replication of items
in the first half of a stimulus sequence, including of course, the or-
der in which items appeared in the two halves. However, a similar
manipulation to which the visual system is thought to be particu-
larly sensitive with respect to spatial patterns is a reverse replica-
tion of the first half of a stimulus – i.e., mirror symmetry (Barlow
& Reeves, 1979; Bruce & Morgan, 1975; Jenkins, 1982). Some of
the most recent evidence for the sensitivity of the visual system
to spatial mirror symmetry comes from neuroimaging research
demonstrating that the dorsolateral extrastriate visual cortex con-
tains symmetry-sensitive neuronal representations (Cattaneo
et al., 2011). Furthermore, overt visual attention and human eye
fixations are attracted by local, mirror symmetry in spatial patterns
(Kootstra, de Boer, & Schomaker, 2011).

Despite many studies of the visual system’s striking sensitivity
to spatial mirror symmetry, remarkably little is known about the
complementary case, sensitivity to mirror symmetry in the time
domain. Therefore, Experiment 3 explored the sensitivity of the
human visual system to temporal mirror symmetric transforma-
tions. Observers performed the same noise-repetition discrimina-
tion task as in Experiments 1 and 2, but with sequences that
contained either an exact repetition of individual items’ order, or
a temporally-mirror symmetric repetition in the second half of
the stimulus. If the visual system’s sensitivity to temporal and spa-
tial mirror symmetry are comparable, we would expect perfor-
mance with a temporally symmetric pattern to match or perhaps
even exceed that of an untransformed temporal repetition.
4.1. Methods

4.1.1. Observers
Twenty-one observers over the age of 18 participated in the

experiment. All had normal or corrected to normal visual acuity
and were naive to the purposes of the experiment.
4.1.2. Stimuli, procedure and design
With two exceptions, the stimuli, procedure and design were

identical to those used with 1D noise in Experiment 1. First, this
experiment introduced two different modes of sequence repeti-
tion: a Forward condition, in which the second half of a repeated
stimulus sequence was an exact temporal duplicate of the first half
(i.e., a direct replication of the 1D condition of Experiment 1); and a
Reverse condition, in which the second half of a repeated stimulus
sequence was a temporally reversed version of the first half. In the
Reverse condition, the initial frame of the second half of the stim-
ulus was removed, in order to avoid having the middle two frames
be identical (and thus appear as a single frame that was twice the
duration of the other frames). As a result, the Reverse condition
contained only seven unique frames, rather than eight. Second, a
between-subjects design was used, with 10 observers being ran-
domly assigned to the Forward condition and 11 to the Reverse
condition. We chose a between-subjects design because of an issue
that arose during pilot tests using a within-subject design in which
Forward and Reverse conditions were intermingled. When observ-
ers could not know ahead of time whether, from trial to trial, a re-
peat would be either Forward or Reverse, overall performance was
quite poor.
4.2. Results and discussion

Figs. 2d, 7 and 8 show the results of Experiment 3. Fig. 2d plots
mean d0 values for RN and FixRN noise, separating performance in
the Forward and Reverse conditions. These data reveal two inter-
esting effects. First, observers had a difficult time detecting a noise
repetition when it was presented as temporally mirror symmetric.
This is demonstrated by the lower overall d0s for both RN and Fix-
RN noise samples. Second, unlike in the Forward condition, the lack
of difference between RN and FixRN in the Reverse condition sug-
gests that observers did not learn and utilize the characteristics of
the mirror symmetric FixRN noise samples over the course of a sin-
gle block. An ANOVA with repeated measures on one factor (noise
repetition type) confirmed that performance in the Forward



Fig. 7. Trial-wise performance in Experiment 3, shown as percentage of hits plotted against successive trials for both RN and FixRN stimuli. Results in the lefthand panel are
for trials on which a sequence was repeated in Forward direction (as in Experiments 1 and 2); results in the righthand panel are for trials on which a sequence was repeated in
Reverse order. Lines roughly following the data points were produced by smoothing the raw data (circles) with a three-trial-wide roving window. Straight lines correspond to
the best-fitting (least-squares) linear fits to the raw data. Error bars represent ±1 s.d. for the smoothed data, estimated by bootstrap simulations.

Fig. 8. Mean (closed symbols) and variance (open symbols) kernels estimated by reverse correlation for the two types of 1D noise stimuli used in Experiment 3. Left panel:
kernel for stimulus sequences whose first four items repeated in the same direction (forward) as originally presented. Right panel: kernels for stimulus sequences whose first
four items were repeated in reverse order. Error bars on symbols represent ±1 s.d., estimated by bootstrap simulations. Gray bands denote ±2 s.d. confidence regions for each
kernel type, estimated by bootstrap simulations.
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condition was significantly better than in the Reverse condition
(F(1,83) = 10.71, p < .0001). The overall difference between RN
and FixRN noise was only marginally significant (F(1,82) = 3.5,
p = .06), as was the interaction between noise repetition type and
stimulus direction (F(1,82) = 2.86, p < .09).

The results of a trial-wise analysis are shown in Fig. 7. The left
and right panels of that figure show the results for the Forward and
Reverse conditions, respectively. Trial-wise performance in the
Forward condition replicated the results found in the previous
experiments, showing a very gradual increase in performance
across trials with the FixRN stimuli. However, trial-wise perfor-
mance with the mirror reversed stimuli was markedly different,
showing a gradual decrease in performance across trials for the
FixRN stimuli. That is, performance seems to decline over time as
observers are exposed to additional samples of the FixRN stimulus.
Regression analyses of the raw data revealed only marginally sig-
nificant linear trends in all conditions: Reverse RN noise:
r = �.31, p = .07; Reverse FixRN noise: r = .08, p = .07; Forward RN
noise: r = �.20, p = .07; Forward FixRN noise: r = .26, p = .06.

Results of reverse correlation analyses are shown in Fig. 8. The
left and right panels plot the weights for the Forward and Reverse
conditions, respectively. The pattern of weights across items in the
Forward condition closely replicated the characteristic pattern of
preferential weighting for the 4th and 8th frame found in previous
experiments (see Fig. 4). However, a very different weighting pat-
tern emerged in the Reverse condition. For Reverse stimuli, the
mean kernel shows that observers appeared to be ‘looking’ for a
temporal contrast pattern that passed through approximately
two periodic cycles of contrast variation across the duration of a
stimulus sequence. One possible reason for the surprising result
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that observers’ performance with the FixRN stimulus declined
across trials is that observers may have become progressively more
inclined to adopt the above periodic strategy over the course of an
experimental block. Unlike the strategy used by observers in the
Forward condition – which likely helped observers mitigate the
negative effects of temporal uncertainty (a possibility explored in
more detail in Experiment 5) – the pattern of weights adopted in
the Reverse condition may not have provided a similar benefit to
outweigh the costs associated with applying a fixed periodic
strategy.
5. Experiment four

The trial-wise analyses of hits in Figs. 3, 6 and 7’s show that
observers can learn the characteristics of an arbitrary noise se-
quence over the course of multiple exposures to a FixRN sequence.
This confirms the remarkable encoding ability of short term visual
memory. But what are the longer-term properties of memories
that are formed? Are they simply reset after a brief 200-trial ses-
sion is complete, when a new FixRN sequence is introduced? Or
are they perhaps stored for a longer period of time?

Agus, Thorpe, and Pressnitzer (2010) provided evidence of some
longer-term retention of specific noise samples in memory. One of
their experiments presented observers with the same FixRN sam-
ple in two successive blocks, with the blocks separated by an aver-
age of 16.5 days. Although they found no overall improvements in
performance across successive days (i.e., d0 for FixRN did not im-
prove from day 1 to day 2), they did find differences in the rate
of initial trial-wise learning that took place for the FixRN stimulus
for each block. Specifically, on day 1 they observed their typical
pattern: a rapid increase in performance across the first 5–10 trials,
with asymptotic performance thereafter. On day 2, they found that
the initial ramping up of performance during the first 5–10 trials
was virtually absent, with performance becoming asymptotic at
or near the block’s start. This result suggests that observers did
not have to relearn the specific noise patterns to which they had
been exposed several weeks earlier, presumably because they
had stored them in long-term memory.

Experiment 4 was designed to determine whether with random
visual sequences learning was as robust to the passage of time as
was Agus et al. found with auditory sequences. To do this, we
tested each observer in two sessions using exactly in both sessions
the same stimuli and trial sequences. The sessions were distributed
over two successive days, separated by at least 24 h. We chose this
separation between sessions rather than the much longer one used
by Agus et al. in order to increase the chances that we would see
significant retention of visual memory for learned FixRN stimuli
across days.

In addition to examining the robustness of memory for specific
noise samples, we were also interested in revisiting the effects of
the dimensionality of our noise stimuli. We speculated that noise
patterns that only vary in the temporal domain may have a very
limited set of memorable ‘features’, and this may be partially
responsible for our inability to replicate the trial-wise learning ef-
fects found by Agus et al.. Although the 2D noise that we tested
observers with in Experiment 1 contained many ‘features’ more
than did the 1D noise (128 spatial � 8 temporal samples of 2D
noise vs. just 8 temporal samples of 1D noise), it might be that each
2D spatial sample’s small retinal angle (�1 minarc) promoted spa-
tial mismatches or spatial smearing across successive temporal
samples. Such spatial mismatches, if they occurred on RN or FixRN
trials and if they were not well-correlated between items in a se-
quence’s two halves, would have disrupted perception of the corre-
spondence between samples in those half-sequences. In order to
examine this possibility, we tested observers with lower resolution
2D conditions. Specifically, we generated 2D noise stimuli that had
only two spatial noise samples per frame, rather than the full res-
olution versions used in Experiment 1.

5.1. Methods

5.1.1. Observers
Sixteen new observers were recruited from same age group as

in the previous experiments. All had normal or corrected to normal
visual acuity and were naive to the purposes of the experiment.

5.1.2. Stimuli, procedure and design
The stimuli and procedure were similar to those described in

the Experiment 1. Observers were tested with both 1D and low-
resolution 2D noise. The 1D noise was identical what was used
in the previous experiments. The lower resolution 2D noise con-
tained only two spatial samples of noise on each frame instead of
128, and each half of the 128 � 128 spatial region on a given frame
was uniformly assigned one of these two samples. This appeared as
two large vertical bars, each 64 � 128 pixels (128 � 256 arcmin)
that defined the left and right halves of the entire 128 � 128 pixel
stimulus region. New samples of spatial noise were generated for
each temporal frame of the stimulus (i.e., 2 spatial samples � 8
temporal frames).

Each observer was tested with three unique FixRN samples, one
in each of three blocks of 200 trials (50 FixRN, 50 RN trials, and
100 N trials). All observers participated in both the 1D and 2D
noise conditions, and were retested with the exact same stimuli
(literally, identical trial-by-trial) 24 h later. The order of the noise
conditions was counterbalanced across observers, so that half of
the observers saw the 1D noise condition blocks first and the other
half saw the 2D noise condition blocks first. This order was then
replicated during the second day of testing.

5.2. Results and discussion

The results of Experiment 4 are shown in Figs. 9–11. Fig. 9
shows average d0 for RN and FixRN noise for on each day of testing
for 1D and 2D stimuli. A 2 � 2 � 2 repeated measures ANOVA
tested the effects of each of these variables and their interactions.
There were significant main effects for all three variables: perfor-
mance with FixRN was better than RN (F(1,47) = 67.3, p < .0001),
performance on day 2 was better than on day 1 (F(1,47) = 24.9,
p < .0001), and performance was better with 2D than 1D noise
(F(1,47) = 4.88, p < .05). There was also a significant 2-way interac-
tion between repeated noise type and day of testing
(F(1,47) = 17.9, p < .0001), with FixRN noise showing greater
improvement across days than RN. Finally, there was also a signif-
icant three-way interaction (F(1,47) = 5.71, p < .05). The improve-
ments in performance from day 1 to day 2 for FixRN but not RN
stimuli are consistent with the idea that observers retained some
memory of the specific FixRN samples they saw on day 1, and were
able to use this memory to enhance performance on day 2.

The results of the trial-wise analysis are shown in Fig. 10. The
top two panels plot performance for 1D noise and the bottom
two panels 2D noise. The left two panels correspond to day 1
and the right two panels day 2. For the 1D noise on day 1, trial-wise
performance was similar to what was seen in previous experi-
ments – a gradual increase in performance over time. On day 2,
performance simply maintained a similar level across time. How-
ever, the pattern was quite different for 2D noise. Here, for the first
time in this series of experiments, we saw a rapid improvement in
performance for FixRN stimuli on day 1 across the first 10 trials,
during which, on average, just three samples of a FixRN stimulus
would have been presented. We verified the reliability of this re-
sult by fitting a line to the first ten trials for 2D FixRN stimuli on



Fig. 9. Values of d0 produced by 1D and 2D versions of RN and FixRN stimuli on the
first and second days of testing.
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Day 1, finding the slope of that line, and then using a randomiza-
tion test1 to determine how often the slope of the hit rates of any
10 trials chosen randomly without replacement from all trials would
exceed the slope found for hit rates over the first 10 actual trials. For
lines that were fit to the 380,000 permuted hit rates, less than one
permutation in 10,000 met the criterion (p < .0001), supporting the
suggestion that learning over the first ten trials with 2D FixRN is in-
deed atypically strong. To test whether this result was some artifact
of the smoothing process, we performed the analogous randomiza-
tion tests on the raw, non-smoothed data. Similar to what we found
with the smoothed data, fewer than one per thousand slopes fit to
randomized data equaled or exceeded the slope of the line fit to
the actual results from the first ten trials with 2D FixRN stimuli.

These results, with smoothed and non-smoothed data, resemble
the rapid learning Agus, Thorpe, and Pressnitzer (2010) found with
random samples of auditory noise. Further, performance on day 2
in our experiment fails to show such a trend. Instead, performance
begins at a level that is already higher that at the end of the first
day’s performance, and this level is maintained across the rest of
the session. Finally, we also see a progressive widening of the sep-
aration between FixRN and RN performance over time with 2D, but
not 1D stimuli. Apparently, doubling the amount of spatial infor-
mation available in each item made it possible for observers to rap-
idly learn the characteristics of a FixRN noise sample – something
they were unable to do with just a single temporally varying sam-
ple. However, it is unclear whether this increase in the rate of
learning resulted from a doubling of the amount of spatial informa-
tion available to observers or was simply due to an increase in the
total number of features present in the stimulus. Future experi-
ments would need to be carried out to distinguish between these
two possibilities.

Fig. 11 shows the results of reverse correlations on data from
Experiment 4. For the sake of simplicity, only the results for the
1 Because there are more than 6.5 billion ways to choose 10 items without
replacement from a set of 48 items, it would have been impractical to do permutation
tests on our data. Therefore we opted for randomization tests, using a large number of
randomizations (380,000) in each test.
mean kernels are shown in these figures. In the leftmost panel,
weights for 1D noise are plotted separately for each day of testing;
for 2D noise, the weights for a stimulus’ left and right sides are
plotted in separate panels, with results for the stimulus’ left-hand
half shown in the middle panel and results for the stimulus’ right-
hand half in the rightmost panel. These data show that, despite the
significant learning effects seen in overall performance, the strat-
egy employed by observers did not change in any obvious way
from day 1 to day 2. Further, observers’ strategies did not differ
in any obvious way between either 1D and 2D noise or the left
and right sides of the 2D stimulus. In most conditions, we see
the characteristic preferential weighting of the middle and end
frames of the stimulus sequence.
6. Experiment five

Our final experiment tested a possible explanation for why
observers in our previous experiments seemed to give dispropor-
tionately heavy weight to the 4th and 8th items in stimulus se-
quences. We hypothesized that that this disproportionate
weighting might reflect observers’ intrinsic uncertainty about the
point in time at which the first half of a repeated sample of noise
ended and the second half began. That is, observers might dispro-
portionately weight the 4th frame in the sequence because they
are trying to anticipate when the temporal mid-point of the stim-
ulus sequence would occur, at which time they could start the pro-
cess of comparing the first and second halves of the sequence.
Further, because they would have placed a disproportionate
amount of weight on the 4th frame in the sequence, they would
also be forced to place a disproportionate amount of weight on
the corresponding 8th frame of the sequence, in order to determine
whether or not the heavily-weighted 4th frame was repeated.

If temporal uncertainty had encouraged observers’ uneven
weighting strategy in the previous experiments, reducing that
uncertainty should promote a weighting strategy that is more
evenly distributed across a stimulus sequence. One possible ap-
proach to reducing temporal uncertainty would be to delineate a
sequence’s two halves by inserting a temporal boundary marker
between those halves. To test this hypothesis, we inserted brief
temporal gaps of varying duration between the first and second
halves of each stimulus sequence. The temporal gap should provide
a clear temporal marker for the mid-point of the stimulus se-
quence, which should in turn reduce observers‘ temporal uncer-
tainty about when the sequence’s mid-point occurs.

6.1. Methods

6.1.1. Observers
Twenty-four naive observers were recruited for Experiment 5.

One observer did not complete the experiment, and thus was ex-
cluded from the data analysis. All observers had normal or cor-
rected to normal visual acuity.

6.1.2. Stimuli, procedure and design
The stimuli and procedure were identical to the 1D noise condi-

tion from Experiment 1, with just one exception. A temporal gap of
zero contrast was introduced between the 4th and 5th items in
each stimulus sequence. Note that, with zero contrast, the entire
screen was at mean luminance. Three different temporal gap dura-
tions were tested: 0, 133 and 400 ms. The 0 ms gap duration repli-
cated the conditions of the previous experiments, that is, no gap
was inserted; the 133 and 400 ms gap durations corresponded to
the durations of a single item in a sequence, and three items in a
sequence, respectively. For each of the three gap durations, an ob-
server was tested in two blocks of 200 trials. The order of



Fig. 10. Trial-wise performance in Experiment 4, shown as percentage of hits plotted as a function of successive trials for RN (filled symbols) and FixRN stimuli (open
symbols). Panels in the upper row show results for 1D stimuli; panels in the lower row show results for 2D stimuli. The left-hand panels show results from Day 1 of testing;
the right-hand panels show results from Day 2 of testing. Smoothing the raw data with a three-trial-wide roving window produced the lines shown connecting data points.
Error bars represent ±1 s.d. for the smoothed data, estimated by bootstrap simulations. Straight lines correspond to the best fitting (least squares) linear fit to each set of raw
data.
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conditions was counterbalanced across observers, as well as across
the three gap duration conditions.

6.2. Results and discussion

Figs. 12 and 13 show results of this experiment. Fig. 12 presents
d0 for RN and FixRN noise as a function of gap duration. Most
importantly, the data show that, for both RN and FixRN stimuli,
d0 increased monotonically with the duration of the gap separating
the first half of a stimulus from its second half. This suggests that
the presence of a temporal gap between noise repetitions did suc-
ceed in reducing temporal uncertainty. Additionally, as found in
the previous two experiments, d0 was higher for FixRN than RN
stimuli, showing that observers were able to learn the fixed re-
peated sample of noise. Finally, the effect of gap duration did not
differ between RN and FixedRN stimuli. A repeated measures AN-
OVA, with two types of repeated stimuli and three gap durations
confirmed a highly significant effect of both repeated noise type
(F(1,45) = 19.8, p < .0001) and gap duration (F(2,90) = 17.22,
p < .0001), but no significant interaction between repeated noise
type and gap width (F(2,90) = .17, p = .83).

Most directly relevant to our hypothesis about temporal uncer-
tainty are the results of the reverse correlation analysis, which are
plotted separately for each gap duration in the top left panel of



Fig. 11. Mean kernels estimated by reverse correlation for the 1D and 2D noise stimuli used in Experiment 4. Values derived from an analysis of the first day’s testing are
shown as filled symbols; values from the second day’s testing are shown as open symbols. Left panel: mean kernel for 1D stimulus sequences. Middle panel: mean kernel for
contrasts comprising the left half of a 2D stimulus sequence; right panel: mean kernel for contrasts comprising the right half of a 2D stimulus sequence. Error bars represent
±1 s.d., estimated by bootstrap simulations. Gray band in each panel denotes ±2 s.d. confidence region, estimated by bootstrap simulations.

Fig. 12. d0 values associated with gaps of different duration inserted into sequences
between the fourth and fifth items. Open symbols show results for RN stimuli;
closed symbols are for FixRN stimuli.
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Fig. 13. As with Experiment 4, for the sake of simplicity only results
for mean kernels are shown in these figures. Recall that our
hypothesis was that the presence of a temporal gap between the
first and second repeated noise presentations might reduce or re-
move the preferential weighting of the 4th and 8th stimulus items
that was seen previously, because observers would no longer be
limited by the presence of intrinsic temporal uncertainty. Consis-
tent with this prediction, the pattern of weights across frames in
the presence of a gap did not match what was found in the previ-
ous experiments. Although different patterns were found for 133
and 400 ms gap durations, neither showed the characteristic pref-
erential weighting for the 4th and 8th stimulus items seen previ-
ously, in Fig. 4. However, interpretation of these results is
complicated by the fact that the preferential weighting of the 4th
and 8th frames was also not obtained with a 0 ms gap – a condition
that directly replicates the conditions tested in the previous
experiments.
The 0 ms gap condition was identical to conditions in several of
our previous experiments. As such, our failure to replicate the re-
sults from our previous experiments in the 0 ms condition requires
explanation. One possibility is that having been exposed to condi-
tions in which there was a gap between stimulus halves changed
observers’ strategies. Recall that the orders in which observers
completed the three different gap-durations conditions were coun-
terbalanced, so that only 1/3 of the observers experienced the 0 ms
gap width condition before the other two conditions. If exposure to
one or both of the non-zero gap conditions prior to the 0 ms gap
duration condition was responsible for failure to replicate the re-
sults of previous experiments, we would expect observers who
were exposed to the 0 ms gap condition prior to any non-zero
gap condition to show the same pattern of weights that was seen
in previous experiments. To test this possibility, carried out a con-
ditionalized reverse correlation analysis. We first sorted the 24
observers into three categories according to the gap duration with
which they were tested first, and then did a separate reverse corre-
lation analysis on each of these three subsets of data. The results of
this analysis are shown in the top right and bottom two panels of
Fig. 13. Each panel, based on just eight observers, shows the esti-
mated weights for one gap duration condition as a function of an
item’s ordinal position within a stimulus. The top right panel plots
these data for observers who were initially exposed to a gap dura-
tion of 0 ms, the bottom left a gap duration of 133 ms and the bot-
tom right a gap duration of 400 ms. As indicated by the relatively
large error bars on each data point, the weights estimated by this
analysis are far noisier those generated from the complete data
set, because of the reduced numbers of trials comprising each data
subset. Nevertheless, it appears that the results of our previous
experiments were partially replicated when observers were ini-
tially exposed to the 0 ms gap condition and there was either a 0
or 133 ms gap in the stimulus. Under those conditions, the 4th
frame of the stimulus sequence received preferential attention,
partially mirroring the patten seen previously.

Although variability of the results from the conditionalized re-
verse correlation analysis forecloses truly strong conclusions, our
results in aggregate are consistent with the hypothesis that tempo-
ral uncertainty influences the pattern of weights observers assign
to items in a stimulus sequence. Specifically, the conditionalized
reverse correlation analysis suggests that experience with a fixed
temporal landmark can reduce these effects. This interpretation
is consistent with the overall picture painted by the results of
the d0 analysis – namely, that temporal uncertainty plays an impor-
tant role in how observers perform when they attempt to discrim-
inate repeated sequences from non-repeated ones.



Fig. 13. Mean kernels estimated by reverse correlation for sequences into which various durations of gap have been inserted between items four and five of the sequence.
Upper left panel: kernels estimated by averaging over all orders of gaps. Upper right panel: kernels estimated only from observers tested first with 0 ms gap (i.e., no gap).
Bottom left panel: kernels estimated from observers tested first with a 133 ms gap. Bottom right panel: kernels estimated from observers tested first with a 400 ms gap. Error
bars represent ±1 s.d., estimated by bootstrap simulations. Gray band in each panel denotes ±2 s.d. confidence region, estimated by bootstrap simulations.
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7. General discussion

By testing observers’ ability to discriminate between temporally
repeating and temporally uncorrelated random noise sequences
our experiments explored some key properties of learning and
short-term visual memory. Unbeknownst to observers, our stimuli
included some recurring ‘fixed’ exemplars of repeated noise that
appeared multiple times within a block of trials. Across experi-
ments, we manipulated various aspects of the noise sequences,
such as their dimensionality, their temporal symmetry, and the
duration of a temporal gap inserted at their temporal midpoint.
We found that: (1) over the course of relatively few trials, observ-
ers were able to learn the properties of both 1D and low-resolution
2D fixed sequences of temporally repeating random visual noise;
(2) observers placed more weight on temporal locations that corre-
spond to the mid and end points in a stimulus sequence, which
may reflect the influence of temporal uncertainty; (3) overall per-
formance (d0) was positively correlated with the total summed
contrast of the fixed repeating noise samples; (4) learning of a fixed
repeated noise sample’s properties persisted for at least 24 h; and
(5) introduction of temporal mirror symmetry severely disrupted
observers’ ability to discern repeating from non-repeating noise se-
quences, and prevented learning from taking place. Below, we con-
sider some of the broader implications of these results.

7.1. The correlation between d0 and summed contrast

Reverse correlation analyses revealed that every item in a se-
quence did not exert the same influence on observers’ decisions,
with the 4th and 8th ordinal positions in a sequence exerting a par-
ticularly strong influence. In addition, the examination of total
summed contrast within sequences (Fig. 5B) showed that se-
quences whose value of summed contrast produced the highest
d0 values. This result is particularly interesting, because there is
no necessary relationship between total summed contrast, calcu-
lated over an entire eight item sequence, and the recognition of a
repetition between the first and second halves of a noise sequence.
In fact, the summed contrast of our randomly generated repeated
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noise sequences is on average zero, and yet our observers were
much better at discriminating repeated noise sequences that were
on average more positive than negative in contrast.

Prototype or ensemble-encoding models of cognition suggest
one way that summed contrast could influence performance in
our task. Models of this class (e.g., Alvarez, 2012) address mem-
ory’s well-known capacity limitations by asserting that a set of
items or objects is encoded not as individual items, but by means
of some summary, scalar value computed over the set of items. It
is straightforward to see how ensemble encoding might be rele-
vant in our recognition paradigm. To deal with the high informa-
tion processing demands of our task, an observer would estimate
some ensemble value for the first four items in a sequence, then
estimate the comparable value for the last four items, and finally
use the relationship between the two estimates as the basis for
deciding whether the stimulus sequence had been repeated or
not. Given the visual system’s inherent noise and whatever noise
might be added in memory, an optimal decision that the sequences
were identical should not require a perfect match between the two
ensemble codes, that is, zero difference between the two scalars,
but only that the values match within some appropriate tolerance
limits.

But to which attribute of individual items in our stimulus se-
quences might ensemble coding be applied? One obvious candi-
date attribute is summed contrast. After all, we have already
seen that a scalar representation of total contrast computed over
an entire stimulus sequence affords a reliable separation between
FixRN sequences that support good performance and ones that do
not (Fig. 5B). We examined whether this summary statistic, com-
puted not over an entire stimulus sequence, but separately for each
half sequence, could account for observers’ performance. Because
summed contrast values for each half of either a FixRN and RN
stimulus sequence always matched one another, those stimuli
could not be used to test the idea that ensemble coding might be
Fig. 14. (A) The relationship between the two halves of a non-repeat (N) stimulus sequen
false recognition response to a non-repeat stimulus [P(fa|N)] is plotted against levels of
curves represents results from various experiments. Error bars were generated by means
with size of error bars shown by the gray ribbon. The leftmost data points in each curve re
between sequence halves was smallest; the rightmost data points are for the one-fourth
contrasts. (B) Results averaged over all experiments, with each quartile’s value expresse
calculated from the fractional uncertainty for each original estimate. (C) P(fa|N) as a fun
sequence (trials were pooled from all experiments). Line through the data is the best (le
at work in our task. But that limitation does not apply to stimulus
sequences in the N (non-repeat) condition. Therefore, for every N
condition stimulus presented in any experiment, we computed
the difference between the summed contrast values in the stimu-
lus’ first and second halves. We then sorted stimuli into quartiles
based on those differences in summed contrast values, and com-
puted the mean false alarm rate associated with trials in each
quartile.

Fig. 14a displays the proportion of false alarms accounted for by
trials in each of four equally populous bins of differences in
summed contrast between the first and second half of stimulus se-
quences. The family of curves represents results from various
experiments; the dotted line summarizes results averaged over
all the experiments. The leftmost data points represent the one-
fourth of trials on which the difference between summed contrasts
was smallest; the rightmost data points are for the one-fourth of
trials that had the largest difference between summed contrasts.
Fig. 14b shows the average results across all experiments, with
each quartile’s result expressed as a proportion of all false alarms.
These figures suggests there is a substantial systematic relation-
ship between tendency to make a false recognition, on one hand,
and the magnitude of the difference in summed contrasts, on the
other. For example, Fig. 14b shows that, across all experiments,
the trials with the smallest average contrast differences account
for 31% of all false alarms, while trials with the largest average con-
trast differences account for just 17% of false alarms. So, for a non-
repeating sequence, the more similar the summed contrast values
are for that sequence’s first and second halves, the more likely are
observers to misjudge the sequence as having repeated.

As the preceding analysis was preliminary and post hoc rather
than embedded in a full model, we adopted a default approach
for results shown in Fig. 14a and b. Specifically, we ignored the
possible influence of noise in encoding and in memory (Sekuler &
Kahana, 2007), and the influence of temporal uncertainty, which
ce predicts whether the stimulus will attract a false recognition. The probability of a
difference between the summed contrast of a stimulus’ two halves. The family of
of bootstrapping. The dotted line shows results averaged over all the experiments,
present the one-fourth of trials on which the difference between summed contrasts
of trials that had the largest difference between first and second halves’ summed

d as a proportion of all false alarms. Error bars for values shown in the inset were
ction of the temporal correlation between the first and second halves of the noise
ast-squares) linear fit.
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was shown in Experiment 5. Moreover, we assumed that all items
in a half-sequence entered the computation with equal weight, and
that there was a linear relationship between the probability of a
false alarm and the numerical difference between a sequence’s pair
of summed contrast values. Relaxing one or more of these assump-
tions in future work could well strengthen and clarify the relation-
ship between the variables represented in Fig. 14a and b. In
particular, reverse correlation analyses presented earlier showed
that the contrast of every individual item probably does not make
the same contribution to the aggregate influence of summed con-
trast. Also, Experiment 3 showed that temporal mirror reversal had
an extremely negative impact on performance. Both of these re-
sults would only be expected if some aspects of the temporal pat-
terns of the first and second halves of the noise sequences exerted
an influence on observers’ decisions.

If this second kind of temporal pattern comparison process is in
fact taking place, then we would make the strong prediction that
observers should be more likely to make false alarms when the
temporal patterns of the first and second halves of the pure noise
sequences happen to be more similar to each other. We quantified
this prediction by first computing the temporal correlation be-
tween the contrast values presented during the first and second
halves of each N trial noise pattern. This gave us a measure of
the temporal similarity between the two halves of each pure noise
sequence. Then, each of these correlations was classified as either
leading to a correct rejection or a false alarm. Finally, we generated
11 equally spaced temporal correlation bins, spanning between �1
and 1, and computed the probability of obtaining a false alarm for
the trials falling within each bin. Fig. 14c shows the results of this
analysis. If observers were basing their decisions in part on the
temporal characteristics of the noise within each half of the stim-
ulus, we would expect the probability of a false alarm to systemat-
ically increase with greater temporal correlation between the two
halves. We did in fact find a moderate but significant linear rela-
tionship between p(fa|N) and temporal correlation (solid line,
r = 0.6, p < .01). Taken together, the results support the idea that
observers performed a computation that was a hybrid between a
pure ensemble computation, in which multiple items’ contrasts
are combined into a scalar value, and a computation in which each
item in the first half of a sequence is compared against the corre-
sponding item in the second half. Further development and testing
of such a hybrid model is beyond the scope of the current report, as
it is best accomplished with additional data that are generated
with stimulus sequences specially constructed for the purpose
(e.g., Rust & Movshon, 2005; Sekuler & Kahana, 2007).

Although observers performed above chance in every one of our
experiments, that success may actually represent a lower bound on
potential performance in our task. Consider, for example, the algo-
rithm that controlled the quasi-random selection of contrast levels
that in our stimulus sequences. As explained earlier, that algorithm
was intended to control the contrasts in any one sequence so that
individual sequences would not be so distinctive that they would
be easily identified, and therefore explicitly recognized if the same
sequence appeared on multiple trials. Two components of the
stimulus-generating algorithm were particularly important in this
regard: the drawing of contrast samples from a low-variance
Gaussian distribution centered on the display’s mean luminance,
and the censoring of extreme values. These constraints meant that
a significant proportion (�10%) of all contrast samples lay very
near zero contrast, that is, within �5% of the uniform background
luminance upon which contrast sequences were presented. The
two constraints also clamped the range of total summed contrast
values that comprised any sequence or half-sequence. As both of
these variables influence performance (see Figs. 5B and 14), it
seems likely that relaxing these constraints would enhance
performance.
Finally, there is an additional reason for believing that our re-
sults might underestimate the performance that could be achieved,
particularly with FixRN stimuli. The intentional homogeneity of
our stimulus sequences is likely to encourage retroactive interfer-
ence (Kahana, 2012), which would retard some of the learning that
otherwise could have resulted.

7.2. What is being learned?

In all the experiments reported here, observers had the same
basic task: to recognize when a series of quasi-random visual con-
trasts repeated from the first half of a sequence to the second half.
Instructions to observers emphasized matches between corre-
sponding items in a stimulus’ halves as the basis on which a se-
quence should be judged as repeating or not. However, analyses
of the connection of performance to stimulus attributes made it
clear that, either by choice or as the result of perceptual or memory
limitations, observers did not adhere strictly to the item-by-item
comparisons implied in the instructions. What, then, did observers
learn? More specifically, what were they learning about the FixRN
stimuli that allowed the gradual performance improvement we
observed?

Our task required observers to pursue two distinct forms of
learning. First, observers had to learn to distinguish between stim-
uli whose halves repeat and stimuli whose halves are uncorrelated.
This part of the task would have been made difficult by the influ-
ence of noise during encoding and/or in memory. If every item in
a sequence had been registered and remembered with perfect
fidelity, information embedded in each sequence would have sup-
ported perfect discrimination between sequences whose halves re-
peated and ones that did not. In other words, imperfections in the
representation of a sequence, converted what could have been a
perfect, deterministic decision into a probabilistic, imperfect one.
As a result, over trials observers must develop a criterion for distin-
guishing between sequences of the two types (Turner, Van Zandt, &
Brown, 2011). Then, in parallel with this simple, categorization
learning, observers demonstrated that they learned something
about the FixRN exemplar in each block of trials. In the remainder
of this section, we focus on this second form of learning.

At the outset, one potential explanation of the observed learn-
ing can be easily discounted. Experiment Five revealed that tempo-
ral uncertainty limited observers’ performance. When we reduced
observers’ uncertainty about the separation between a sequence’s
first and second halves, performance substantially improved. This
result suggests the possibility that over trials, performance with
FixRN stimuli might have improved as encoding of timing informa-
tion became more precise (Buhusi & Meck, 2005; Machado, Malhe-
iro, & Erlhagen, 2009). This increased precision would have
diminished temporal uncertainty. As observers showed essentially
little or no learning over trials with RN stimuli, it is unlikely that
learning with FixRN stimuli arose from some experience-depen-
dent reduction in temporal uncertainty.

In our experiments, improved trial-wise performance with par-
ticular FixRN exemplars comprises a form of incidental learning. By
incidental, we mean learning ‘‘which apparently takes place with-
out a specific motive or a specific formal instruction and set to
learn the activity or material in question,’’ (McGeogh and Irion,
1952; p. 210). Specifically, observers’ task was defined solely in
terms of within-trial comparisons between items in the first- and
second-half sequences. Moreover, the feedback provided after each
response was contingent only whether the observer correctly
judged the item-by-item matches within first- and second-half se-
quences. In other words, observers had ‘‘no specific motive or a for-
mal instruction’’ to treat intermittently-presented FixRN
sequences as anything other than one among sequences whose
first and second halves matched. Moreover, as the same algorithm
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generated RN and FixRN sequences, the statistics of any single
stimulus afforded no basis on which observers could correctly clas-
sify that stimulus as an RN or FixRN sequence. This could explain
why few of our observers recognized that FixRN sequences re-
curred multiple times – even when directly prompted during
debriefing to do so.

As noted above, instructions to observers emphasized the criti-
cal role of comparisons between corresponding items in a se-
quence’s halves. However, several results suggest that observers’
judgments were based on some subset of all the information rep-
resented in a sequence’s individual items. For example, reverse
correlation analyses (Figs. 4 and 8) revealed that not all items con-
tributed equally. Moreover, the analysis of summed contrast
(Fig. 14) demonstrated the importance of aggregate, rather than
or in addition to item-by-item representations. We believe that
reliance on a limited subset of stimulus information follows natu-
rally from the high-dimensional statistical properties of our stim-
uli. In our task, an observer is presented with samples from an
extremely large number of stimulus states that the observer at-
tempts to map onto simple, binary judgment, a computationally
challenging problem often referred to as the ‘‘curse of dimension-
ality’’. As Botvinick (2012) noted, computational work on learning
in high-dimensional state spaces addresses the curse of dimen-
sionality by means of state abstraction. In state abstraction, a lear-
ner shrinks the space that needs to be explored during learning by
collapsing over one or more correlated states. This eases the chal-
lenge of learning, though at the cost of information loss. We
hypothesize that this beneficial reduction in stimulus information
arises early in visual processing, as a result of the rapid rate with
which items succeed one another, and the fact that stimulus lumi-
nance levels are clustered not far from the mean, background level.

7.3. Relation to other tasks and stimuli

Although the spatial and temporal particulars of the task used
in our experiments are distinctive, our observers’ success de-
pended upon an ability shared by many studies in psychophysics
and memory, namely the ability to recognize that a stimulus has
repeated. To take one example, studies of recognition memory
ask observers to judge whether some stimulus is ‘‘old’’ (familiar)
or ‘‘new’’ (unfamiliar). In studies of visual recognition, observers
must judge whether a currently presented stimulus repeats or
matches a stimulus or stimuli seen previously.

As mentioned earlier, some aspects of our stimuli and task were
modeled after those of Agus, Thorpe, and Pressnitzer’s (2010). Psy-
chophysical studies of memory for auditory sequences have a long
tradition of using particular repeated sequences as stimuli. The
best known of such work was triggered by Julesz’s (1962) sugges-
tion that frozen noise stimuli could be used to quantify what he
termed a sensory modality’s ‘‘depth of processing’’. For Julesz, the
term ‘‘depth of processing’’ referred to the longest random signal
whose partial periodicities could be detected. For example, one
could determine the longest stochastic sequence, either visual or
auditory, for which viewers or listeners could distinguish repeti-
tions of a sequence from an entirely random, non-repeating sto-
chastic sequence. When Guttman and Julesz (1963) iterated
samples of auditory frozen noise, listeners had no trouble experi-
encing the distinctive auditory results, so long as samples of frozen
noise were no longer than �1–4 s. In fact, at short repetition peri-
ods (e.g., 250 ms), repeated frozen noise signals produced odd,
characteristic sounds that listeners likened to the sounds made
by a motorboat. Subsequently, others modified this basic paradigm
in an attempt to identify the acoustic features that actually
supported detection of repetition in frozen noise sequences. For
example, Pollack (1972) suspected that listeners exploited a thres-
holding strategy in order to minimize the amount of information
required by auditory memory. The strategy, he hypothesized, was
to detect and compare only the iteration of a sequence’s most ex-
treme amplitudes. However, when Pollack greatly reduced that
variation among amplitudes present in his sequences, listeners’
performance was unchanged. From their ingenious set of experi-
ments, Warren and Bashford (1993) concluded that ‘‘. . .sequences
of brief items, whether speech sounds, tones, or stochastic wave-
forms derived from noise, can be processed globally as complex
patterns or temporal compounds, and that resolution into discrete
components is not required for discriminating between different
arrangements of the acoustic components.’’ The proposition that
sequences of auditory frozen noise can be processed globally is
at least partially consistent with the finding, described above, that
judgments of repetition in visual frozen noise sequences may not
depend solely resolving a stimulus sequence into all of its discrete
components (see Fig. 14). A detailed examination of this hypothe-
sis will require experiments in which specially constructed stimu-
lus sequences are combined with tasks that rigorously test the
degree to which visual frozen noise sequences are processed
globally.

It is worth noting that only a few researchers have adapted
Guttman and Julesz (1963) basic strategy in order to characterize
depth of processing in vision. Moreover, such studies have focused
on the detection of repetitions defined over space (Pollack, 1973)
rather than on repetition over time, as in our experiments. As such,
it is difficult to make principled comparisons between the results
of such studies and our own findings.

Finally, we should note that several observers in our experi-
ments volunteered that they had adopted an unusual strategy to
help them distinguish repeated from non-repeated sequences of
visual contrasts. These observers reported that in their ‘‘mind’s
ear’’ they translated the sequence of varying contrast into a form
of auditory imagery, and then used that imagery as the basis for
their judgments (Hubbard, 2010; Seashore, 1938). Of course, no
matter how interesting or plausible observers self-reports may
be, there is solid evidence that such self-reports may not be valid
(Nisbett & Wilson, 1977). However, it may be worthwhile to try
to devise some method by which to test observers’ claimed reli-
ance on auditory imagery (e.g., Guttman, Gilroy, & Blake, 2005)
to solve what on its face is an inherently visual challenge posed
by our stimuli and task.
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