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Abstract Observers made change-detection judgments for
colored squares in a paradigm that manipulated the retention
interval, the magnitude of change, and objective change prob-
ability. The probability of change judgments increased across
the retention interval for “same” and “small-change” test items
but stayed the same or decreased for “large-change” and “far”
test items. A variety of formal models were fitted to the
individual-subject data. The modeling results provided evi-
dence that, beyond changes in visual-memory precision, there
were decreases in memory strength of individual study items
across the retention interval. In addition, the modeling results
provided evidence of a zero-information, absence-of-memory
state that required guessing. The data were not sufficiently
strong to sharply distinguish whether the losses in memory
strength across the retention interval were continuous in na-
ture or all-or-none. The authors argue that the construct of
memory strength as distinct from memory variability is an
important component of the nature of forgetting from visual
working memory.
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In this research we examined the issue of how visual working
memories (VWMs) are lost over time. The predominant view
in the field is that perceptual memories become progressively
less precise with increases in the retention interval, with

distinct visual objects becoming gradually less discriminable
from one another (e.g., Magnussen & Greenlee, 1999).
Classic work has examined alternative psychophysical func-
tions on their ability to describe the relation between percep-
tual discriminability and the retention interval (for a review
and critical analysis, see, e.g., Laming & Scheiwiller, 1985).
Models based on diffusion processes have been developed to
provide mechanistic explanations for these gradual losses in
precision and discriminability (e.g., Kinchla & Smyzer, 1967).

Modern work in visual working memory has also exam-
ined the ability of precision-based models to explain declines
in perceptual discriminability that arise with increases in the
retention interval (e.g., Bays, Catalao, & Husain, 2009; Brady,
Konkle, Gill, Oliva, & Alvarez, 2013). Some of the main
metaphors in these forms of modeling are that perceptual rep-
resentations become increasingly “fuzzy” or more variable as
the retention interval increases. In this modern work, the main
procedure used for examining these issues has been the con-
tinuous-recall paradigm (Wilken & Ma, 2004; Zhang &
Luck, 2008). In this paradigm, observers view a set of study
objects, such as colors in different locations that vary in their
hue. Following a variable retention interval, a single location
is probed, and the observer is required to reproduce the color
that existed at that location by clicking on the appropriate
portion of a color-wheel response device. According to
precision-loss theories, the perceptual memory of the studied
color follows a bell-shaped probability distribution that be-
comes more variable with the passage of time. Such models
have yielded excellent quantitative accounts of performance
in the color-reproduction task.

The central thesis that we advance in the present work is
that beyond changes in visual-memory precision or variability,
there are decreases in memory strength as the retention inter-
val increases. We formally distinguish between precision and
strength in the context of our subsequent model-fitting
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analyses. In brief, and as we expand upon below, whereas
precision influences the extent to which distinct objects are
similar to one another, strength is a construct pertaining to
the memory representation of a single object. We pursue this
thesis involving the joint roles of precision and strength in
VWM forgetting by examining performance in a change-
detection paradigm rather than the continuous-recall task
(e.g., Luck & Vogel, 1997; Pashler, 1988; Rouder et al.,
2008). In the present change-detection paradigm, a single lo-
cation from the visual display was probed with a color, and the
observer was required to judge whether the color at that loca-
tion changed or stayed the same. As we explain below, the
change-detection paradigm allowed us to test for key aspects
of the nature of VWM forgetting, about which the continuous-
recall paradigm does not provide information.

Variability versus strength

We had three main motivations for testing the change-
detection version of the task. The primary motivation was that
we sought to gain evidence of more detailed forms of memory
loss than is currently hypothesized in extant precision-based
accounts of VWM. As noted earlier, the dominant ap-
proach to modeling precision loss in VWM is in terms
of increased variance of an underlying perceptual mem-
ory distribution. Thus, in a color-recall task, the locations to
which the observer points on the color wheel will become
increasingly variable. Alternatively, in making change/same
judgments, the ability to discriminate between distinct visual
objects may decrease.

In our view, however, the hypothesis that the value of the
remembered color simply becomes more variable with the
passage of time is only part of what may constitute visual
memory loss. A conceptually distinct idea is that the strength
of the memory trace of the to-be-remembered object may also
decrease with the passage of time. Ultimately, we will flesh
out these constructs in terms of distinct formal parameters of
mathematical models of VWM change detection. We start,
however, by trying to provide intuitions of the psychological
meaning of the terms.

Suppose that an observer studies the color green.
Following a retention interval, the memory for the color may
wander from the true value, such that the remembered value is
now closer to aqua. Although the remembered value of the
object has undergone change, something more seems to be
involved in fully characterizing the nature of the memory loss.
Subjectively, besides changing value, the original memory
seems also to have faded away. Stated another way, the
retained memory seems to have less intensity than immediate-
ly after the original study experience. The memory-strength
construct that we incorporate in our modeling is aimed at
formalizing this intuition.

Indeed, numerous memory models outside the domain of
VWM have distinct formal constructs related to similarity
(discriminability between pairs of objects) and strength (a
factor pertaining to individual objects). For example, in
spreading-activation models of memory (e.g., Anderson,
1990), individual items are represented as nodes and relations
between items are represented as links. Items that are more
closely related are connected by stronger links. In addition,
however, the individual-item nodes may have different
baseline strengths determined by factors such as the
frequency or recency with which those individual items have
been experienced. The extent to which an individual-item
node is activated is determined jointly by its baseline strength
in memory and the spreading activation it receives from its
connecting links.

Likewise, formal exemplar models of perceptual identifi-
cation and categorization and short-term and long-term mem-
ory have long distinguished between the similarity between
distinct exemplars and the memory-strength or stimulus bias
associated with those individual exemplars (e.g., Kahana &
Sekuler, 2002; Luce, 1963; Nosofsky, 1991a, 1991b;
Nosofsky, Little, Donkin, & Fific, 2011; Shepard, 1957).
Upon presentation of a test probe, the extent to which any
exemplar is activated is a joint function of its similarity to
the test probe and its underlying memory strength. For
example, in recent work, Nosofsky et al. (2011; Nosofsky,
Cox, Cao, & Shiffrin, 2014) used an exemplar-model ap-
proach to accounting for performance in visual short-term
memory-search tasks. In these tasks, the observer is presented
with a short list of study items, followed by a test probe, and
the observer judges whether the test probe occurred in the
study list. Nosofsky et al. (2011; Nosofsky et al., 2014) found
that accuracies and response times (RTs) in the task were
dramatically influenced by the recency with which a test probe
had been presented on the study list, with more recently pre-
sented items giving rise to more accurate responding and
faster RTs. The results were well modeled by assuming that,
independent of the test probe that was presented, the strength
of the individual study items on the list decreased as their lag
of presentation increased.

By analogy, in a VWM change-detection task, it seems rea-
sonable to hypothesize that the probability that the observer
judges a test probe to be the same as a remembered object
may be influenced by two factors: (a) the similarity between
the test probe value and the remembered value, which will be
influenced by the amount of memory variability that has taken
place, and (b) the strength of the remembered value. In a
continuous-recall color-reproduction task, one is attempting to
probe only the estimated value of the remembered object: the
strength of that remembered value is not being assessed. As will
be seen, in the present study, by testing instead how change-
detection judgments vary with the retention interval, we sought
to test for a joint role of variability and strength in VWM.
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Gradual decay versus sudden death

Our second motivation for conducting the change-detection
paradigm was to possibly obtain a more sensitive test of
whether declines in VWM performance operate according to
principles of gradual decay in precision and strength or ac-
cording to “sudden death.” In an influential study, Zhang and
Luck (2009) provided evidence that rather than undergoing
gradual declines in precision with increases in the retention
interval, visual working memories undergo sudden death: at
some particular moment in time, there is a complete loss of the
visual memory representation (see also Donkin, Nosofsky,
Gold, & Shiffrin, 2015). In cases of sudden death, the observer
is forced to guess regarding the identity of a presented study
item. The sudden-death hypothesis can be viewed as provid-
ing an extreme form of the loss-of-memory-strength hypoth-
esis: at some moment in time, there is a complete absence of
memory for the study item (i.e., zero strength).

The evidence for sudden death, however, has been obtained
using the continuous-recall paradigm. A potential limitation is
that the properties of the continuous-recall paradigm itself
may interfere with the information stored in VWM. For ex-
ample, in the typical version of the paradigm, the response is
produced by indicating a location along a continuous-valued
response device. Note that presentation of the device itself (in
which all continuous values are simultaneously present) may
be highly interfering of the original memory, thereby leading
to underestimates of the amount of information that was im-
mediately available when memory was probed (e.g.,
Souza, Rerko, Lin, & Oberauer, 2014). Because the
change-detection paradigm involves presentation of only
a single-valued test probe in a given location, it might not lead
to the same pronounced interference, so could perhaps provide
a more sensitive test of a role of gradual and fine-grained
visual-memory decay.

In an effort to develop diagnostic tests between gradual-
decay and sudden-death explanations, we manipulated in our
design the magnitude of change on change trials. First, the
magnitude of change was either small or big. As explained
in our Modeling Analyses section, the big-change trials were
included because they could help to provide evidence of
sudden-death and guessing processes. Second, on small-
change trials, we manipulated the distance of the test probe
from the to-be-remembered color (1, 2, or 3 distance units).
Our hope was that this latter manipulation might provide ev-
idence of a gradual-decay process (perhaps operating along-
side sudden-death mechanisms). The intuition is illustrated in
Fig. 1, which shows how confusability (or similarity) between
colors is presumed to vary with psychological distance and the
precision of memory. Following classic work (Shepard,
1987), our modeling presumes that similarity is an exponential
decay function of psychological distance, with higher preci-
sion memory corresponding to a steeper slope of the

exponential function. If there is decay in precision with time,
then the increase in confusion probabilities as one shifts from
the high-precision to the low-precision curve is predicted to be
nonuniform across distances 1 through 3. By contrast, if only
sudden death operates, then the increase in confusion proba-
bilities is predicted to be more nearly uniform.

Sudden death versus extreme variability

The third motivation for our study was to conduct preliminary
tests of a potential variable-resources account of the manner
in which VWM declines with the retention interval (e.g.,
Fougnie, Suchow, & Alvarez, 2012; Sims, Jacobs, & Knill,
2012; van den Berg, Shin, Chou, George, & Ma, 2012).
Variable-resources models have been applied successfully to
account for the well-known finding that VWM performance
declines with increases inmemory set size. Suchmodels adopt
the idea that memory representations are doubly stochastic:
The hypothesis is that not only does the variability of the
memory representations tend to increase as set size increases
but, in addition, there is a great deal of variability across indi-
vidual items in terms of how variable these memory represen-
tations are. In an extreme case, for example, because minimal
memory resources may be devoted to some particular item, an
extremely dispersed memory representation may develop for
that item. If an observer were relying on this type of
extremely dispersed representation to recall a color in
the continuous-recall task, it would be akin to a random
guessing process. Indeed, van den Berg, Awh, and Ma
(2014) found that such variable-resources models pro-
vided better detailed quantitative fits to continuous-recall data
than did models that assumed mixtures of perceptual memory
and guessing.

Fig. 1 Schematic illustration of how confusion probability (or
“similarity”) varies with psychological distance and memory precision
(sensitivity)
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Variable-resources models might be adapted to account for
how VWM declines with the retention interval by positing
that there is some probability that a highly dispersed memory
representation develops for items at some point in time. Note
that whereas the sudden-death hypothesis posits the absence
of memory (and so the need for a true guessing process), the
variable-resourcesmodel instead posits the presence of a high-
ly variable representation. In our view, these hypotheses are
conceptually and psychologically distinct. Furthermore, as
will be seen, the hypotheses can be distinguished with use of
the present VWM change-detection task.

To anticipate the results our study, we believe that we were
successful in achieving some but not all of these goals.
Specifically, we believe that our results provide clear evidence
that change-detection judgments across the retention interval
involve something more than only increased perceptual-
memory variability or confusability. Something akin to chang-
es in individual-item memory strength (or related item biases)
also appear to play a major role. Furthermore, we find evi-
dence for the role of a zero-information state involving the
absence of memory in the paradigm: The alternative hypoth-
esis of extreme variability from variable-resources
models does not appear to be a substitute for the
absence-of-memory construct. Despite these successes, our
data proved to be ultimately insufficient to allow us to distin-
guish between gradual-decay and sudden-death models of
short-term visual memory decay.

Experiment

We conducted a VWM change-detection task involving color
stimuli. On each trial, three colors from a 360-degree color
wheel were briefly displayed in simultaneous fashion at dis-
tinct spatial locations on the computer screen. On the key trials
of interest, all three study colors were highly discriminable
from one another (adjacent colors from the wheel were 82–
98 degrees apart). Following a variable retention interval (1, 2,
4, or 10 s), a single test-probe color was presented at one of the
spatial locations on the screen. The test probe was either the
same as the original color; 16, 32, or 48 degrees away (small-
change trials); or roughly 90 or 180 degrees away (big-change
trials). Across blocks, change trials occurred with probability
.3, .5, or .7. Subjects were informed of the objective change
probability at the start of each block and were encouraged to
adjust their response biases in accordance with the operating
change probability. For example, on blocks in which change
probability was high (.7), subjects were informed that if they
were guessing, they could achieve more correct answers if
they guessed “change.” The manipulation of response biases
across blocks yields greater constraints for distinguishing al-
ternative models of change-detection performance (Donkin,
Nosofsky, Gold, & Shiffrin, 2013; Rouder et al., 2008).

Two issues that arise in trying to discriminate between
sudden-death and gradual-decay explanations of VWM loss
involve spatial-position uncertainty and verbal-labeling strate-
gies. When the observer is tested regarding the identity of an
object from a given spatial position, there may be some prob-
ability that the observer makes the judgment with respect to an
item from the wrong position (e.g., Bays et al., 2009; Donkin,
Tran, & Pelley, 2015; Dubé, Zhou, Kahana, & Sekuler, 2014).
One approach to addressing this issue is to conduct paradigms
in which the observer is presented with only a single object
from a single spatial position on each trial. Unfortunately, this
alternative procedure makes it much more likely that observers
will generate verbal labels for the to-be-remembered objects.
Under such conditions, the memory becomes a complex amal-
gam of true VWM along with verbal codes, and specialized
techniques are needed to tease the components apart (Donkin
et al., 2015). Following Zhang and Luck (2009), in the present
study observers were presented briefly and simultaneously with
three visual objects in order to minimize verbal-labeling strate-
gies. In addition, they were given explicit instructions to avoid
using verbal-labeling strategies and to silently repeat the word
the if they found themselves using such strategies.

Although we will not be able to rule out the possibility that
positional uncertainty contributes to our forgetting data, we
believe that our use of three highly discriminable to-be-
remembered objects together with Far-probe test trials helps
reduce the role of such uncertainty. In particular, to the extent
that the observer responds “same” on big-change trials, it can-
not be because the test probe is similar to some object from the
incorrect spatial position: In our design, Far test probes are
distant from all three study objects. In addition, on trials with
small changes, the test probe will tend to be similar to only the
probed study object, making even clearer to the observer
which of the to-be-remembered objects is the relevant one.

Method

Subjects

The subjects were five members of the Indiana University
community whowere paid for their participation. Each subject
participated for between 9 and 11 sessions, with each session
lasting approximately 1.5 hours. Subjects were paid at the rate
of $10 per hour, with small bonuses for good performance.
The subjects all had normal or corrected-to-normal vision, and
all reported having normal color vision. None of the subjects
was aware of the issues under investigation in the research.

Stimuli

The stimuli, similar to those described in Zhang and Luck
(2008, 2009), were 180 colors that were evenly spaced around
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a circle in the L*a*b* color space (L = 50, a = 10, b = 10, with
a radius of 40 units). The colors were presented as 30 ×
30 pixel squares within a 200 × 200 pixel region cen-
tered on the computer screen. The background color of the
screen was white.

All stimuli were generated using MATLAB (version 7.1)
and the extensions provided by the Psychophysics Toolbox
(Brainard, 1997). The stimuli were presented on a single
Apple iMac computer with an integrated Sony Trinitron
Multiscan 420GS CRT at a frame rate of 100 Hz (resolution:
1024 × 768 pixels; size: 38.25 × 28.5 cm). The luminance and
color calibration measurements were obtained using in-house
software and a Photo Research PR-174 SpecraScan radiome-
ter. The maximum and minimum displayable luminances
were 131.7 cd/m2 and 0.02 cd/m2, respectively. Viewing dis-
tance was approximately 57 cm, and the visual angle of the
individual squares was approximately .75° × .75°.

Procedure

On each trial, three colored squares were presented on the
computer screen in random locations within the central rect-
angular region, subject to the constraint that the centers of
each square were at least 60 pixels away. For ease of descrip-
tion, we denote the three squares on the key trials of interest as
“left,” “middle” and “right” with respect to their status on the
color wheel. On each such trial, the middle-color square was
selected at random from the color wheel; the left-color square
was 82 to 98 degrees less than the middle square (chosen
randomly within this interval); and the right-color square
was 82 to 98 degrees greater than the middle square. (Left
and right values less than 0 or greater than 360 degrees were
translated to appropriate values on the 360-degree color
wheel.) We used these widely spaced colors on the key trials
in order to minimize certain potential effects of positional
uncertainty on the change-same judgments (see below). On
filler trials, which were presented with probability .2, the three
study colors were chosen at random from the color wheel.

On each trial, a single randomly chosen location from the
study array was probed with a test square presented at that
location. The test probe was either the same color as the orig-
inal study square; a small-change color (16°, 32°, or 48° away
from the relevant study square); or a big-change color (172° to
188° from the middle color square). Note that on these big-
change or “Far” trials, the test probe was far from all three
study squares, so any confusions on such trials would be un-
likely to arise from small gradual losses of precision and/or
positional uncertainty (see Modeling Analyses section).

There was a variable retention interval (1, 2, 4, or 10 s)
between the presentation of the study colors and the test probe.
The retention interval on each trial was chosen at random.

Each session of the experiment was divided into nine blocks
of 56 trials each. We manipulated objective change probability

across blocks: .3, .5, or .7. Each change-probability condition
occurred once every three blocks in a random order. Within
each block, if a trial was selected to be a change trial, then
the degree of change (16°, 32°, 48°, or “Far”) was
chosen at random.

All trials began with a 500ms fixation asterisk, followed by
the presentation of the three study squares (500 ms). The
screen then went blank for the chosen retention interval minus
a 200-ms cue time. A 200-ms asterisk cue then appeared at the
location of the to-be-presented test probe, which was present-
ed immediately after the cue. The test probe remained on the
screen until the subject made a change or same judgment by
pressing an appropriate button on the keyboard (J = change, F
= same). Following the response , text feedback
(“CORRECT!” or “INCORRECT”) was provided for 1 s at
the center of the screen. Following each block, subjects were
informed of their overall percentage of correct responses.

Subjects were informed at the start of each block of the
objective change probability operating during that block.
They were instructed to adjust their response biases in accord
with the objective change probability. Subjects were also
instructed to rest their left and right index fingers on the F
and J keys throughout each block and to press the appropriate
key as soon as they made their same versus change judgment.
Although wemeasured subjects’ response times (RTs), the RT
results were used solely for the purpose of trimming the data
and were not the subject of any modeling analyses.

Results

We deleted from analysis all trials in which the RT was less
than 180 ms or greater than 3,000 ms (less than 1 % of the
data). Such trials were likely cases involving motor-response
errors or failures to attend to the task. Each of the individual
subjects showed similar patterns of results. Therefore, al-
though we conduct modeling analyses at the level of individ-
ual subjects, we present the data averaged across the subjects
to illustrate the main trends.

The data are shown at their most fine-grained level in
Fig. 2, which plots the probability of change judgments as a
joint function objective change probability, probe distance,
and the retention interval. (The different symbol types show
the observed data, whereas the different line types are the
predictions from a full version of the formal model to be
presented in the Modeling Analyses section.) To allow for
easier observation of the main trends, Fig. 3 plots the results
after averaging across the different retention intervals, where-
as Fig. 4 plots the results after averaging across the different
objective change-probability conditions.

As can be seen in Fig. 2, regardless of the level of objective
change probability (cp) and the retention interval, respond-
change probabilities were greatest for the Far stimuli,
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decreased systematically as the distance of the probe from the
to-be-remembered stimulus got smaller (D3, D2, D1), and
were lowest when the test probe was the same as the to-be-
remembered stimulus (see also Figs. 3 and 4). In addition,
respond-change probabilities were greatest when objective
change-probability was high (cp = .7) and lowest when objec-
tive change-probability was low (cp = .3) – see also Fig. 3. The
results of greatest interest concern interactive effects of the
retention interval and probe distance (see Figs. 2 and 4). Not
surprisingly, for same stimuli, respond-change probabilities

(i.e., “false alarms”) grew larger as the retention interval in-
creased. The increased false-alarm rate is predicted by essen-
tially all models that assume that forms of forgetting increase
with the retention interval. Interestingly, however, respond-
change probabilities for stimuli at probe-distance levels D1
and D2 (i.e., “hits”) also increased with the retention interval.
In other words, at these probe distances, accuracy improved
with increases in the retention interval. Finally, at the largest
probe distances (D3 and Far), change probabilities either
stayed the same or decreased across the retention interval.

Fig. 2 Mean P(Respond Change) judgments plotted as a joint function of
change probability (cp), stimulus type (Same, D1, D2, D3 and Far), and
the retention interval (1, 2, 4 or 10 seconds). Different symbol types

represent the observed data and different lines types are the predictions
from the full version of a formal model used to analyze the results

Fig. 3 Mean P(Respond Change) judgments plotted as a joint function of
stimulus type (Same, D1, D2, D3, and Far) and objective change
probability. Symbols: observed data, line types: model predictions

Fig. 4 Mean P(Respond Change) judgments plotted as a joint function of
stimulus type (Same, D1, D2, D3 and Far) and the retention interval
(seconds). Symbols: observed data, line types: model predictions
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These patterns of results will prove challenging for VWM
models based solely on the assumption that only perceptual
confusability increases with the retention interval. It is also
worth noting here that in the cp = .3 condition (top panel of
Fig. 2), the probability of change judgments is clearly less than
unity for the Far stimuli. Intuitively, this result provides evi-
dence of guessing behavior (i.e., responding based on zero
stimulus information), because it is unlikely that the Far probes
would ever be perceptually confused with the to-be-
remembered stimulus. We provide documentation of this point
in the Modeling Analyses section.

In Fig. 5 we report the results in terms of d’, defining false
alarms as the probability of change judgments to same probes,
and hits as the probability of change judgments to change
probes. As can be seen, d’ decreases as the distance of the
probe to the to-be-remembered stimulus gets smaller
and also decreases with the retention interval. These
same patterns were observed at all three levels of objective
change probability. The d’ results provide an immediate clue
that the performance changes across the retention interval in-
volve some form of true memory loss and are not due solely to
criterion shifts.

Modeling analyses

Modeling framework

The most general models that we use for fitting the data and
interpreting the results assume that the change judgments arise
from a mixture of two processes: one based on perceptual
memory and one based on guessing. If the to-be-
remembered object has been encoded and has not undergone
sudden death, then the observer is presumed to use her

perceptual memory to make the change-same judgment.
Otherwise, the subject must rely on guessing. The probability
that the studied object resides in perceptual memory (pmem) at
time of test is assumed to depend solely on the retention time t.
Given that it resides in perceptual memory, the probability that
use of that memory leads the observer to make a change judg-
ment is denoted memc and depends jointly on probe-distance
d, retention-time t, and objective-change-probability cp. In the
most general version of the model, if the memory for an object
has undergone sudden death, then the probability that the ob-
server guesses “change” (g) is allowed to depend jointly on
the level of objective change probability cp and on the reten-
tion time t. Thus, as a general framework for analyzing the
data, we assume that the probability that the observer responds
“change” given probe-distance d, retention-time t, and
objective-change-probability cp is given by

P C
���d; t; cp

� �
¼ pmem tð Þ⋅memc d; t; cpð Þ

þ 1−pmem tð Þ½ � ⋅ g cp; tð Þ: ð1Þ

We used two approaches to modeling the probability that
use of perceptual memory leads to a change judgment (memc).
In both approaches, following Shepard (1987), we assumed
that the similarity s between the probe and the to-be-
remembered object was an exponential decay function of their
psychological distance d,

s ¼ exp −κ ⋅ dð Þ; ð2Þ
where κ is a sensitivity parameter. Changes in the κ parameter
lead to the changed slopes of the exponential similarity func-
tions depicted in Fig. 1.

In the first approach, which we refer to as the sensitivity-
based approach, the psychological distance d between the
probe and the to-be-remembered item was given determinis-
tically by the scaling provided by the L*a*b* color space: d =
0, if the probe was the same as the item; d = 1, 2, or 3, for
distances D1, D2, and D3, respectively; and d = 7.5 for the Far
probes.1 We modeled gradual loss of memory precision in
terms of a reduced value of sensitivity (κ) with retention time
(e.g., Nosofsky, 1987). Thus, separate values of κ were esti-
mated for retention times t = 1, 2, 4, and 10.

In the second modeling approach, which we refer to
as the variability-based approach, the variability (σ) of
the study-item memory distributions was assumed to
increase with the retention interval. Distances (d) be-
tween test items and study items were computed with respect

Fig. 5 Mean d’ values plotted as a joint function of stimulus type (D1,
D2, D3, and Far) and the retention interval (seconds). Symbols: observed
data, line types: model predictions

1 Depending on the to-be-remembered item, the Far probe was on aver-
age either 5.625 or 11.25 distance units away. For simplicity, we used the
weighted distance 7.5 in the reported modeling-analysis results. Spot
checks of individual subject results revealed that the exact choice of Far
distance within this range led to minuscule changes in model fits.
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to these variable memory distributions and transformed to
similarities (s) via Eq. 2 (see Variability-Based Approach sec-
tion for details). Separate values of σ were estimated for each
retention time.

For both approaches, the probability that use of perceptual
memory led to a change judgment (memc in Eq. 1) was then
given by

memc d; t; cpð Þ ¼ k cpð Þ= k cpð Þ þMt ⋅ s½ �; ð3Þ

where k(cp) is a criterion parameter that is presumed to vary
with objective change probability; and Mt is the memory-
strength of the trace of the to-be-remembered item.
Presumably, if memory strength varies, then it gets weaker
as retention time t increases.

Forms of Eq. 3 have been used successfully in past efforts
to model perceptual recognition data (e.g., Nosofsky et al.,
2011; Nosofsky et al., 2014; Nosofsky & Zaki, 2003; Shin
& Nosofsky, 1992) and it is useful to consider its underpin-
nings. The factor Mt ⋅ s can be viewed as the degree to
which the memory trace of the to-be-remembered item
is activated by the test probe. As described in our in-
troduction, this memory-trace activation is a joint func-
tion of the strength of the trace (Mt) and its similarity to
the test probe (s). If the activation is strong, then there
is a good deal of evidence that the probe is old – thus,
a reduced probability that the observer would make a change
judgment. Note that as the distance (d) from the probe to the
item increases, similarity (s) decreases (Eq. 2), so the
observer is more likely to make a change judgment. Thus, the
model naturally predicts increasing change judgments with
increases in the distance of the test probe from the to-be-
remembered item.

Next, consider the predicted effect of increased retention
time. According to the first modeling approach, as t increases,
sensitivity (κ) decreases. Thus, there is increased similarity of
distinct probes to the to-be-remembered item. Therefore, with-
out any additional mechanisms operating, the perceptual-
memory-basedmodel is forced to predict that as retention time
increases, there should be a reduction in change judg-
ments for all probes that are distinct from the to-be-
remembered item. Because change judgments instead often
increase with the retention interval (see Fig. 4), this pure ver-
sion of a perceptual-memory-loss model is unable to account
for the data.

One approach to accounting for the results, however, is to
make allowance for the idea that the memory strength of the
to-be-remembered item (Mt) decreases with retention time
(Donkin & Nosofsky, 2012; Nosofsky et al., 2011; Nosofsky
et al., 2014). Because activation of the item trace is a joint
function of memory strength and similarity, item activation
may therefore decrease with retention time, leading to the
increased change judgments seen in the data. As will be seen,

instead of assuming continuous decreases in memory strength
with time, another approach to predicting the increasing
change judgments is to assume all-or-none changes in mem-
ory strength (i.e., sudden death).

Recall that according to the second approach to modeling
precision loss, the sampled distance d has increasing variabil-
ity as the retention interval increases. Whether this increasing
variability would lead to increasing or decreasing values of
similarity (s in Eq. 3) depends jointly on the mean probe
distance (μd) and the absolute levels of variability (σ) that
are involved. We will see, however, that without making al-
lowance for some second factor beyond increases in memory
variability, the pure variability-based version of the precision-
loss model runs into the same problems as does the sensitivity-
based version.

Thus far in our discussion the focus has been on the
gradual precision-loss component of the model.
Alternatively, memory loss may arise due to sudden
death, modeled in Eq. 1 in terms of decreases in the
pmem parameter with time t. In the case of sudden
death, the observer is forced to guess whether or not a
change has occurred. In the most general version of the
model that we tested, the guess-change probability was given
by the product of two guess-change factors, the first related to
objective change probability and the second to the retention
interval:

g cp; tð Þ ¼ g1 cpð Þ ⋅ g2 tð Þ: ð4Þ

Presumably, for example, as objective change-probability
(cp) increases, the magnitude of the first guess-change factor
will increase.

As currently described, the formal model has a surplus of
available free parameters for fitting the data. The full version
of the sensitivity-based model has 20 free parameters: 4 all-or-
none memory parameters (pmem); 4 sensitivity parameters
(κ); 3 freely varying memory-strength parameters (Mt; with-
out loss of generality, M1 = 1); 3 criterion parameters (k); 3
guess-change parameters related to objective change probabil-
ity (g1); and 3 freely varying guess-change parameters related
to retention time (g2; without loss of generality, the
maximum g2 can be set at 1). The full version of the
variability-based model has 21 free parameters: the 4
sensitivity parameters are replaced by a single sensitiv-
ity parameter and 4 perceptual-memory variability pa-
rameters. As explained below, potentially more parsimo-
nious versions of the models arise by constraining some of the
free parameters a priori. Tests of these constrained
models can be used to provide evidence of whether
changes in memory strength operate along with changes in
memory variability in the change-detection task; and whether
forgetting arises due to gradual loss of visual-memory preci-
sion or sudden death.
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Model-fitting approach

We fitted all models to each individual subject’s data by using
a maximum-likelihood criterion. Specifically, we conducted
computer searches for the free parameters that maximized
the likelihood function

L ¼ ∏
d;t;cp

NC d; t; cpð Þ⋅P C
���d; t; cp

� �F Cjd;t;cpð Þ
⋅ 1−P C

���d; t; cp
� �h iF Sjd;t;cpð Þ

ð5aÞ
where the product is taken across all combinations of the fac-
tors probe distance d, retention time t, and objective change
probability cp; P(C|d, t, cp) denotes the predicted probability
of change judgments at that combination of factors (Eq. 1);
F(C|d, t, cp) is the observed frequency of change judgments;
F(S|d, t, cp) is the observed frequency of same judgments; and
NC denotes the binomial coefficient of C change judgments
from N = F(C) + F(S) total observations.

The fits of the models were evaluated by transforming the
log-likelihood (ln L) values into both Akaike Information
Criterion (AIC) values and Bayesian Information Criterion
(BIC) values:

AIC ¼ −2 lnLþ 2np; ð5bÞ

BIC ¼ −2 lnLþ ln Nð Þ ⋅ np; ð5cÞ

where np is the number of free parameters used by the model
and N is the number of observations in the data. The latter term
in each criterion is a penalty term for use of free parameters. The
model that achieves a smaller AIC or BIC is considered to
provide a more parsimonious account of the data. Assuming a
large sample size, the BIC places a greater penalty on number of
free parameters than does the AIC. Thus, whereas the AIC tends
to favor more complex models, the BIC tends to do the reverse.

Modeling results: sensitivity-based approach

The fits of all models to be described in this section are listed
in Table 1. We started by fitting the full version of the
sensitivity-based model to the data to confirm that it provided
a reasonable organizing framework. The predictions from the
full model are illustrated along with the observed data in
Figs. 2, 3, 4 and 5. (The predictions of the averaged data are
obtained by averaging across the model’s predictions of each
individual subject’s data.) As can be seen, the full model
achieves precise quantitative fits of all averaged results.

To evaluate the importance of different components of the
model, we fitted restricted (i.e., special-case) versions of the
model in which various parameters were constrained a priori.
We start by describing cases in which the free parameters were
critical to achieving good fits and then move to cases in which
more parsimonious fits can be achieved. To provide some

understanding of the reason for the resulting fit values, we plot
predictions from the special-case models of respond-change
probabilities as a function of probe distance and the retention
interval (see Fig. 6).

To begin, we fitted a version of the model that assumed no
sudden death at any retention times (i.e., values of pmem = 1 at
all values of t). (Because there was no sudden death, there was
no guessing behavior, so the g1 and g2 parameters are not used
either.) As can be seen in Table 1, even using the BIC statistic
(which tends to favor simpler models), this “perfect memory”
model yielded dramatically worse fits to the data of all sub-
jects than did the full model. The reason for these poor fits is
shown in Fig. 6a. Recall that subjects responded “change” to
the Far probes at rates significantly less than unity, particularly
at long retention intervals in the cp = .3 condition. Without
allowing for an absence-of-memory state, the perceptual-
memory component of the model needs to estimate extremely
low values of sensitivity to try to account for those errors (and
still falls short in doing so). These low sensitivity estimates
then force the model to greatly under-predict the probability of
correct change judgments for probes at distance levels D2 and
D3. Thus, apparently, there was at least some proportion of
trials in which subjects relied on pure guessing behavior in the
absence of any perceptual memory for the study stimuli.2

A second special-case model of interest that can be easily
rejected is one that assumes no changes in any form of mem-
ory strength across the retention interval. Unlike the “perfect-
memory” model, in this model the all-or-none pmem parame-
ter is allowed to be less than 1; however, its value is held
constant across all retention intervals. In addition, the
memory-strength parameters from the continuous visual-
memory component of the model (the Mt values in Eq. 3)
are held fixed across the retention interval. As reported in
Table 1, the AIC fits of this constant memory-strength model
are dramatically worse than those of the full model for all five
subjects, and the BIC fits are much worse for four of the five
subjects. The reason for the extremely poor fits is shown in
Fig. 6b. Recall that the respond-change probabilities increased
for same probes and for D1 and D2 probes as the retention
interval increased. Without allowing for any changes in
memory strength, the reduced-sensitivity model predicts
decreases in respond-change probabilities, not increases.
The present version of the model tries to compensate
for this difficulty by assuming increasing guess-change
probabilities across the retention interval (the g2 param-
eter in Eq. 4). However, this assumption then forces the
model to incorrectly predict increasing respond-change prob-
abilities for the D3 and Far probes, so the model yields very
poor fits.

2 Recall also that these big-change same judgments cannot be attributed
to spatial-position uncertainty because the Far probes are perceptually
distant from the items at all spatial locations.
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To summarize, using the sensitivity-based approach to
modeling precision loss, our interim conclusions are that (a)
there is a role of a zero-stimulus-information state (i.e., an

“absence of memory” state) in the change-detection judg-
ments and (b) above and beyond possible changes in pairwise
discriminability, there are losses in individual-item memory

Table 1 AIC and BIC fits of the sensitivity-based models

Sensitivity-based models 1 2 3 4 5 Sum AIC

Full (20) 320.3
448.3

303.5
429.0

284.4
410.4

314.8
440.6

290.3
416.3

1,513.3

Perfect memory no guessing (10) 401.3
465.3

383.5
446.3

388.0
451.0

443.0
506.0

487.7
550.6

2,103.5

Constant mem. strength and mem. prob. (14) 397.7
487.3

400.3
488.1

340.9
429.1

402.7
490.8

324.2
412.4

1,865.8

Constant perceptual confusability (14) 313.2
402.8

309.0
396.8

285.2
373.5

311.7
399.8

290.0
378.2

1,509.1

Constant mem. prob. and guessing (14) 315.2
404.8

305.0
392.8

280.3
368.5

308.7
396.8

296.9
385.1

1,506.1

Note. Top value in each cell = AIC, bottom value in each cell = BIC. Values in parentheses are the number of free parameters used by each
model. Mem. = Memory, Prob. = Probability.

Fig. 6 a. Predictions from perfect-memory-probability model. b. Predictions from constant memory-strength and memory-probability model. c.
Predictions from constant memory-precision model. d. Predictions from constant memory-probability model
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strength across the retention interval. However, we have yet to
contrast sudden-death versus gradual-decay accounts of the
results. For example, the losses in memory strength may be
all-or-none (reflecting sudden death) or gradual (the continu-
ousMt parameters). In addition, the model tests thus far do not
bear on the question of whether there are gradual changes in
memory precision (κ) with time.

To address the sudden-death versus gradual-precision-loss
hypotheses, we fitted additional special-case models to the data.
In a “constant perceptual confusability” model, the continuous
memory-strength parameters were held fixed at 1 and the sen-
sitivity parameters were held fixed at a constant value of κ. Only
the all-or-none memory parameters (pmem) and retention-based
guessing parameters (g2) were allowed to vary across the reten-
tion interval. As shown in Table 1, the AIC fits of this constant
perceptual-confusability model were approximately the same as
those of the full model and the BIC fits of the model were
considerably better than those of the full model. Thus, the data
are consistent with the hypothesis that there were no continuous
changes in precision or memory strength across the retention
interval and that the results can be interpreted in terms
of sudden death and guessing. However, we also fitted a
model to the data that assumed a constant probability of
using memory (a fixed value of pmem in Eq. 1) and
constant guessing across the retention interval (g2 held
fixed at 1). As shown in Table 1, this “constant
memory-probability and guessing” model yielded AIC and
BIC fits that were very close to those of the constant-
perceptual-confusability model. Figure 6c and d reveal that
both special-case models are capable of providing good ac-
counts of how the change-detection judgments varied with
stimulus distance and the retention interval. It appears that
the present data are not sufficiently strong to sharply discrim-
inate between the sudden-death and gradual precision-loss
views.

The best-fitting parameters from these two parsimonious
models, averaged across subjects, are reported in Table 2.
The best-fitting parameter estimates are easily interpretable.
For the model that assumes constant sensitivity (κ) and mem-
ory strength (Mt) across the retention interval, the following
patterns are observed: First, the memory-storage probabilities
(pmem) decrease systematically across the retention interval.
Second, the criterion parameters (k) as well as the guessing
factor g1 increase systematically as objective change-
probability increases. This pattern reflects that the observers
show a greater bias to respond “change” as objective change-
probability increases. Finally, the g2 estimates indicate that in
cases in which observers are in the no-information state, the
tendency to guess “change” increases as the retention interval
increases. The parameter estimates for the model version that
assumes constant memory-storage probability (pmem) and
constant g2 guessing values are also highly systematic: First,
there is a systematic decrease in sensitivity (κ) across the

retention interval. Second, the continuous memory strengths
(Mt) decrease in regular fashion across the retention interval.

3

And third, the criterion parameters (k) and g1 estimates in-
crease as objective change-probability increases.

Modeling results: variability-based approach

Recall that the second set of models formalized decreasing
precision across the retention interval in terms of increased
variance of the memory representations rather than in terms
of decreased settings of the sensitivity parameter. We imple-
mented versions of the variance-based models that were anal-
ogous to those discussed previously for the sensitivity-based
approach. We fitted this class of models by using computer-
simulation techniques. On any given trial, a to-be-
remembered study item had reference value zero, and its sim-
ulated location h at retention time twas a random sample from
a standard normal distribution with standard deviation σt. The
“momentary distance” d associated with a test probe that was
D units from the study item was then given by d = |μD – h|.
This momentary distance would then be transformed to a sim-
ilarity s via Eq. 2 (cf. Ennis, Palen, & Mullen, 1988) and
prediction probabilities then generated using the same equa-
tions as in the sensitivity-based model. The predictions were
obtained by using 10,000 simulations at each individual com-
bination of the factors d, t, and cp.

The resulting fit values are reported in Table 3. In brief, the
pattern of model fits paralleled in most respects the results that
we have already discussed for the sensitivity-based approach.
The versions of the models that did not make allowance for a
zero-information state or that did not make allowance for any
decreases in memory strength with the retention interval gen-
erally provided poor AIC fits to the data (and sometimes even
produced poor BIC fits). By comparison, parsimonious ac-
counts of the data are again available using the two alternative
modeling approaches. First, the model that assumes no chang-
es in visual-memory confusability but inwhich there is sudden
death across the retention interval fits well. Second, the model
that assumes no increases in sudden death but gradual de-
creases in visual-memory discriminability (due to increased
variance) also fits well. The best-fitting parameter estimates
for those two models, averaged across subjects, are reported in
Table 4. Again, the patterns of parameter estimates are easily
interpretable. According to the model that assumes constant
standard deviations (σt) and constant memory strengths (Mt),
it is the memory-storage probabilities (pmem) that decrease
systematically with the retention interval. As expected, the
criterion parameters (k) and g1 estimates increase with

3 In line with related work involving short-term memory search (e.g.,
Donkin & Nosofsky, 2012), the memory-strength parameters are almost
a perfect power function of the retention interval. A similar relation is
observed for the sensitivity-parameter estimates.
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increases in objective change probability. Alternatively, ac-
cording to the version of the model that assumes a constant
memory probability (pmem) and constant guessing across the
retention interval (g2), we see the following: First, the standard
deviation of the memory distributions (σt) increases system-
atically across the retention interval. Second, the memory
strengths (Mt) decrease systematically across the retention

interval. And third, the criterion parameters and g1 esti-
mates increase as objective change-probability increases.
In a nutshell, both the sudden-death and gradual-precision-
loss models provide viable and easily interpretable accounts
of the data.

Preliminary investigation of variable-resources models

Our applications of the variability-based models motivate pre-
liminary investigation of another fundamental issue, namely
whether a pure variable-resources model can provide ade-
quate fits to the data without requiring the assumption of a
zero-information stimulus state that forces guessing. As ex-
plained previously, according to variable-resources models,
the variability of the memory representation may itself vary
considerably across items. If minimal resources are devoted to
an item, then the remembered value of that item may be quite
distant from the true value.

In our view, however, even if one makes allowance for the
possibility of a remembered value that is highly distant from
the original, it is unclear how such variable-resources models
could account for performance in the present change-detection
task without making allowance for a guessing state. The key
challenge, in our view, involves cases in which observers fail
to respond “change” on big-change (i.e., Far-probe) trials. The
issue is illustrated schematically in Fig. 7. The to-be-
remembered item has reference value zero and the big-
change probe is illustrated far to the right. We illustrate the
possibility of a highly dispersed memory representation for
the original item in terms of a normal distribution with ex-
treme variability. However, in order for the observer to re-
spond “same” on such a trial, it still must be the case that the
particular sampled value from the extreme-variability memory
distribution just happens to fall (by “luck”) near the big-
change test probe. The likelihood of such an occurrence seems
extremely small. Thus, without major adjustment of other pa-
rameters (which could impact the model’s ability to fit other
aspects of the data), the variable-resources model may have
difficulty accounting for cases in which the probability of

Table 2 Mean values of best-fitting parameters for the sensitivity-
based models

Model

Parameter Constant κ, Mt Constant pmem, g2

κ1 1.278 1.573

κ2 — 1.296

κ4 — 0.920

κ10 — 0.813

M1 [1.000] [1.000]

M2 — 0.509

M4 — 0.221

M10 — 0.149

k(.3) 0.087 0.057

k(.5) 0.134 0.065

k(.7) 0.231 0.108

g1(.3) 0.627 0.257

g1(.5) 0.921 0.791

g1(.7) 0.998 0.916

g2(1) 0.559 —

g2(2) 0.757 —

g2(4) 0.932 —

g2(10) 0.942 —

pmem(1) 0.937 0.864

pmem(2) 0.882 —

pmem(4) 0.723 —

pmem(10) 0.606 —

Note.Values in brackets are held fixed a priori. Empty cells indicate cases
in which a parameter is either not used in the model or is held fixed at its
initial value.

Table 3 AIC and BIC fits of the variability-based models

Variability-based models 1 2 3 4 5 Sum AIC

Full (21) 308.0
442.4

310.2
442.0

283.0
415.3

311.1
443.2

291.6
423.8

1,503.9

Perfect memory no guessing (11) 346.1
416.5

374.3
443.4

374.9
444.2

383.7
452.9

394.6
463.9

1,873.6

Constant mem. strength and mem. prob. (15) 328.6
424.5

327.7
421.8

276.4
370.9

322.6
417.0

301.1
395.5

1,556.4

Constant perceptual confusability (15) 304.3
400.2

311.0
405.1

286.8
381.3

311.4
405.8

290.3
384.8

1,503.8

Constant mem. prob. and guessing (15) 305.1
401.1

317.7
411.8

279.2
373.7

306.1
400.5

299.1
393.5

1,507.2

Atten Percept Psychophys



“same” judgments on big-change trials is non-negligible. By
contrast, models that make allowance for guessing from a
zero-stimulus-information state do not have this difficulty. If
there is an absence of memory for the original stimulus –
rather than a highly variable memory – then the observer
may be just as likely to guess “same” as to guess “change.”

To pursue this line of argument, we formulated some rudi-
mentary versions of variable-resources models that did not
make allowance for a zero-stimulus-information guessing
state but that did make allowance for a high-variance memory
state. We again defined four “standard” memory-variance pa-
rameters, one for each retention interval. However, we also
defined a high-variance parameter for cases in which the ob-
server might develop a highly dispersed memory representa-
tion for an item. Finally, we defined four high-variance-
probability parameters, one for each retention interval. Each
parameter reflected the probability that a high-variance mem-
ory representation was associated with an item at each reten-
tion interval. As was the case for our previously described
variance-based models, to generate predictions, on each

simulated trial a momentary distance d would be sampled
from the relevant memory distribution. The distance would
then be transformed to a similarity (see Eq. 2) and then
substituted into Eq. 3 to generate the predicted probability of
a change judgment. In a baseline version of the model, the
continuous memory-strength parameters from Eq. 3 were
held fixed at 1, whereas in an extended version the
memory-strength parameters were allowed to freely vary. As
reported in Table 5, these versions of the no-guessing variable-
resource models provided poor fits to the data, in accord with
the intuitions that we developed in Fig. 7. It remains an open
question whether elaborated versions of such models might be
developed that do allow one to achieve viable accounts of the
present data.

General discussion

Memory strength

In summary, in the present VWM change-detection task, we
provided model-based evidence that there are decreases in
forms of memory strength that go beyond possible decreases
in visual-memory precision with time. Whereas changes in
memorial precision or variability affect the similarity or
confusability between pairs of objects, “strength” is a con-
struct pertaining to individual objects. By combining assump-
tions regarding individual-item strength and pairwise similar-
ity, various versions of the present change-detection models
were able to predict how respond-change judgments varied
with the retention interval and test-probe distance. In particu-
lar, the models predicted in quantitative detail our findings that
respond-change probabilities increased with the retention

Table 4 Mean Values of best-fitting parameters for the variability-
based models

Model

Parameter Constant σ, Mt Constant pmem, g2

κ 1.726 1.602

σ1 0.583 0.161

σ2 — 0.673

σ4 — 1.427

σ10 — 1.778

M1 [1.000] [1.000]

M2 — 0.732

M4 — 0.465

M10 — 0.294

k(.3) 0.048 0.054

k(.5) 0.081 0.062

k(.7) 0.161 0.121

g1(.3) 0.621 0.222

g1(.5) 0.907 0.783

g1(.7) 0.973 0.909

g2(1) 0.579 —

g2(2) 0.784 —

g2(4) 0.945 —

g2(10) 0.956 —

pmem(1) 0.933 0.862

pmem(2) 0.877 —

pmem(4) 0.718 —

pmem(10) 0.602

Note.Values in brackets are held fixed a priori. Empty cells indicate cases
in which a parameter is either not used in the model or is held fixed at its
initial value.

Fig. 7 Schematic illustration of the low probability with which a specific
value from a high-variability memory representation will be highly
similar to a big-change (Far) test stimulus
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interval for “same” probes and for “change” probes that were
close in distance to the studied item but stayed roughly con-
stant or decreased for “change” probes that were far from the
studied item. Models that did not make allowance for any
changes in memory strength (either continuous or all-or-none)
failed to account for these findings and provided poor quanti-
tative fits (Tables 1 and 2).

We should acknowledge that, rather than assuming that
individual-item memory strength varies, an alternative ap-
proach to fitting the change-probability data would be tomake
allowance for varying response bias across the different reten-
tion intervals. One would simply estimate a separate response-
bias parameter for responding “change” that grew larger as the
retention interval increased. In our view, however, such an
explanation is post hoc. The hypothesis that individual-item
memory strength decreases with the retention interval is
strongly motivated by much past work in cognitive and per-
ceptual psychology, and its translation to the domain of VWM
seems compelling and natural.

Zero stimulus-information state versus extreme variability

A second finding is that adequate quantitative fits to the data
relied on the assumption that a zero-stimulus-information state
– an absence of memory – operated on some proportion of the
trials. On such trials, the observer was forced to guess regard-
ing the test probe’s status. This reliance of the good quantita-
tive fits on the zero-information state seemed to primarily
reflect the finding that incorrect “same” judgments to big-
change (Far) probes were nonnegligible. A natural inter-
pretation, corroborated by the model fits, is that ob-
servers would rarely confuse a study item and a big-
change probe if a memory trace for the study item still existed.
Furthermore, because in our design the big-change probes
were far in distance from all items in the memory set, the
incorrect “same” judgments could not be attributed to
location-position uncertainty.

We also conducted preliminary tests of variable-resource
models of VWM for the present paradigm. According to those
models, the variability of the memory representation may it-
self vary considerably across trials and across different items
from the memory set, in some cases showing extreme vari-
ability. However, without making allowance for a zero-

information guessing state, the versions of the variable-
resource models that we tested were also unable to account
for the “same” judgments to the Far probes. The key intuition
is that although those models make allowance for the possi-
bility that the observer may remember a value for a studied
item that is highly distant from the true value of the studied
item, the probability that the remembered value happens to be
highly similar to any particular big-change probe is still low
(see Fig. 7). It remains to be seen if alternative versions of the
variable-resources models than we tested here could account
for the results.

Limitations and future research

It is important to remind readers that although plots of the
change-probability data suggested that the probability of the
zero-information state increased with the retention interval,
the data were not strong enough to rule out the possibility that
the zero-information state had constant probability (e.g., see
Far-probe results in Fig. 6d). Thus, the evidence for the zero-
information state in the present task could reflect, at least in
part, attentional and encoding limitations rather than memory
limitations and sudden death. In our view, the most likely
possibility is that the zero-information state reflects both
encoding and memory failures.

Another limitation of the present study is that we were
unable to sharply distinguish between gradual-decay versus
sudden-death accounts of the results. Although adequate
modeling of the forgetting data required that one make refer-
ence to two factors – interitem similarity and a factor that we
have termed “memory strength” – the data were not strong
enough to allow us to determine whether the decreases in
memory strength and precision were gradual and continuous
in nature or reflected sudden death. Resolving this fundamen-
tal issue remains as a matter for future research.

Third, we examined VWM retention for only a single type
of stimulus attribute in the present research, namely color.
Although we expect that our findings involving reduced pre-
cision and memory strength will be observed across many
such attributes, future research is needed to test for the gener-
ality of these effects.

Finally, our current account – namely that forgetting
from VWM involves a combination of losses in both

Table 5 AIC and BIC fits of no-guessing variable-precision models

No-guessing variable-precision models 1 2 3 4 5 Sum AIC

Constant memory strength 343.0
426.2

340.2
422.4

322.9
404.8

361.4
443.2

374.0
455.8

1,741.5

Variable memory strength 356.5
458.9

333.9
434.3

325.1
425.9

369.8
470.5

315.7
416.4

1,701.0

Note.Top value in each cell = AIC, bottom value in each cell = BIC. Values in parentheses are the number of free parameters used by each
model. Mem. = Memory, Prob. = Probability.
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memory precision and memory strength – can be
viewed as descriptive in nature. It is important that fu-
ture work build bridges between our account and those
framed at a more mechanistic level, including theories
that emphasize varieties of interference (e.g., Endress &
Potter, 2014; Oberauer, Lewandowsky, Farrell, Jarrold, &
Greaves, 2012), failures of consolidation (Vogel, Woodman,
& Luck, 2006), processes of feature matching and feature loss
(Shiffrin & Steyvers, 1997), and interactions among shared
neural resources (Swan&Wyble, 2014). It is an open question
whether these more mechanistic theories may capture the
types of losses in memory precision and memory strength that
appear to underlie the present VWM forgetting phenomena.
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