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Abstract

Performance in perceptual tasks often improves with practice.  This effect is

known as 'perceptual learning', and it has been the source of great interest and debate

over the course of the last century.  Although much is known about how perceptual

learning changes the properties of cortical circuitry, little is known about how these

changes manifest themselves at the level of behavior.  In this thesis, the behavioral effects

of perceptual learning are considered within the context of signal detection theory.

Within a signal detection framework, an observer's sensitivity in a perceptual task is

defined by the ratio of signal-to-noise within the system.  Thus, according to signal

detection theory, the improvements that take place with perceptual learning can be due to

increases in internal signal strength or decreases in internal noise.  These quantities

cannot be measured directly.  Instead, psychophysical techniques must be used to infer

their magnitudes.  In this thesis, two psychophysical techniques were used to discriminate

between the effects of signal and noise as observers learned to identify sets of unfamiliar

visual patterns.  Noise masking was used to measure observers' equivalent input noise and



iv

calculation efficiency, quantities that correspond to internal noise and internal signal

strength, respectively, within the context of a simple black-box model of the visual

system.  Equivalent input noise only reflects the effects of an internal noise whose

magnitude is independent of the magnitude of the stimulus.  Response consistency was

used to estimate the effect of learning on internal noise that depends on the magnitude of

the stimulus.  Calculation efficiency improved by as much as a factor of four across

learning sessions for two very different pattern identification tasks (face and texture

identification).  However, neither form of internal noise changed significantly with

learning.  These results were used to test the prediction that an observer's calculation

should become more similar to the calculation of an ideal discriminator with practice.

Response classification was used to estimate observers' linear templates as learning took

place, and showed observer's calculations became significantly more correlated with the

ideal template with practice.  Taken together, these results place new theoretical

constraints on models of perceptual learning.
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1                             Signal and Noise in Perceptual Learning:

General Introduction
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This chapter serves as a general introduction to the thesis.  It will begin with a

brief discussion of the general phenomena associated with perceptual learning.  Next,

these effects are considered within the context of signal detection theory, and related to

the concepts of internal signal enhancement and internal noise reduction.  Then, two

techniques will be discussed -- noise masking and response consistency -- that can be

used to estimate the magnitude of these quantities.  Next, a technique called response

classification will be discussed that can be used to estimate changes in the classification

rules used by an observer as learning takes place in a discrimination task.  Finally, an

overview of the rationale and conclusions for each of the experiments in the subsequent

chapters of the thesis will be provided.

Perceptual Learning

The observation that performance in perceptual tasks can improve with practice

has been documented for over a century (Gibson, 1969; Gilbert, 1994).  This

improvement in perceptual discriminations with training is referred to as perceptual

learning, and it has at least four characteristic attributes that, taken together, are generally

thought to differentiate it from other forms of learning.  First, perceptual learning can

occur over a wide range of time scales, from within as little as 100 trials (Fahle, Edelman,

& Poggio, 1995; Poggio, Fahle, & Edelman, 1992) to as long as several weeks (Fiorentini

& Berardi, 1997; Karni et al., 1998; Karni & Sagi, 1993; Sathian & Zangaladze, 1998;
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Schoups, Vogels, & Orban, 1995).  Second, perceptual learning occurs for a wide variety

of perceptual tasks, including very simple sensory discriminations such as visual and

tactile acuity tasks (Fahle et al., 1995; Fahle & Morgan, 1996; Poggio et al., 1992;

Sathian & Zangaladze, 1998), orientation discrimination (Matthews, Liu, Geesaman, &

Qian, 1999; Schiltz et al., 1999; Schoups et al., 1995), motion discrimination (Ball &

Sekuler, 1987; Matthews et al., 1999), texture discrimination (Fine & Jacobs, 2000; Karni

& Sagi, 1991) and auditory pitch discrimination (Demany, 1985; Recanzone, Schreiner,

& Merzenich, 1993).  Third, perceptual learning is typically restricted to the exact

specifications of the stimuli and task where training has occurred (Ahissar & Hochstein,

1997; Ball & Sekuler, 1987; Crist, Kapadia, Westheimer, & Gilbert, 1997; Fahle &

Morgan, 1996; Fiorentini & Berardi, 1980).  That is, the learning often does not transfer

to other tasks, stimuli, or sensory locations.  Finally, observers often do not require

feedback in order to exhibit the learning effects described above (Ball & Sekuler, 1987;

Fahle et al., 1995; Herzog & Fahle, 1997, 1999).

These last three findings (learning for simple stimuli, stimulus specificity, and

implicit learning) have been taken as evidence that perceptual learning occurs at

relatively early stages of sensory processing (Gilbert, 1994).  As a result, much of the

recent psychophysical and physiological work on this topic has been directed toward

localizing the neural substrates that mediate perceptual learning in different tasks and

modalities.  Most of the evidence from these experiments suggests that perceptual
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learning for many tasks takes place at or before the level of primary sensory cortex.  For

example, several studies have found partial or no inter-ocular transfer of learning for

simple visual discrimination tasks (Ball & Sekuler, 1987; Fahle et al., 1995), suggesting

some of the effects of learning for these tasks occur before cortical processing.  Similarly,

physiological studies have found that practice changes the response properties of neurons

in primary cortical areas for simple discrimination tasks, such as visual orientation

discrimination (Schiltz et al., 1999) and auditory frequency discrimination (Recanzone et

al., 1993).  Other physiological studies have investigated the topographic changes that

take place in sensory cortical maps with practice (Buonomano & Merzenich, 1998;

Recanzone et al., 1993).  These studies have found sensory cortex to be highly plastic,

with striking amounts of cortical reorganization and reallocation taking place as a result

of extensive training or restricted experience.  However, there is also evidence that

suggests higher order mechanisms, such as those found in the prefrontal cortex, can also

change with perceptual learning (Asaad, Rainer, & Miller, 2000).

Signal and Noise

But what is it about these mechanisms that changes with learning?  One way to

approach this problem is to consider the effects of learning within the context of signal

detection theory  (Green & Swets, 1966).  Signal detection theory is a general framework

designed to characterize and quantify an observer's decision processes and sensitivity in a
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task.  Although it was first developed within the context of problems in radar, it was soon

realized that it also could be applied to problems related to human signal detection and

recognition (Green & Swets, 1966; Peterson, Birdsall, & Fox, 1954).  Unlike other

theories (e.g., high threshold theory), signal detection theory assumes an observer's

internal responses are probabilistic, so that a particular stimulus has only some

probability of eliciting a particular internal response (or, conversely, an internal response

only has a certain probability of originating from a particular stimulus).  The theory

assumes an observer makes decisions relative to some internal response criterion.  One of

the main assets of this model of the observer is the development of a bias-free estimate of

sensitivity (d') that is independent of the observer's choice of criterion.  This model of

human decision processes makes explicit predictions about the relationship between task

performance and criterion, as well as the shapes of the underlying probability

distributions.  Using these predictions, signal detection theory has been successfully

applied to human performance in a wide range of psychophysical tasks (see Green &

Swets (1988) for an exhaustive bibliography).

Beyond its incorporation of response bias and internal criterion, a second major

feature of signal detection theory is that it can be used to quantify optimal decision

processes, which can in turn be used to estimate the amount of information used by a

non-optimal (e.g., a human) observer in a given task (Geisler, 1989; Tanner & Birdsall,

1958).  Specifically, the decision rule used by an observer that makes statistically optimal
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use of all available information can be derived through Bayesian inference (Tjan, 1996).

The performance of this decision rule can be used to obtain a measure of ideal sensitivity

in a given task.  Ideal sensitivity reflects the performance of an observer with no internal

constraints, and is thus only constrained by the physical availability of information in a

given task.  Human sensitivity can then be compared to ideal sensitivity to determine how

much of the available information the human observer has used in the task.  This method

of quantifying the amount of information used by a non-ideal observer is referred to as

ideal observer analysis, and a more formal treatment of it will be provided in Chapter 2

and in the Appendix.

To understand how these concepts relate to a human observer's behavior in a

typical psychophysical experiment, consider the simple task of discriminating between

two signals, S0 and S1.  In a typical discrimination task, an observer might be shown

either S0 or S1 in a brief interval.  The observer's task is to decide which signal had

appeared in the interval.  Psychologically, the stimulus will produce an internal response

within the observer, and this internal response must be used to make a decision as to

which signal was shown.  An ideal observer will always perform this task perfectly.

However, a human observer is not ideal.  One way that human and ideal observers differ

is in terms of internal noise.  If an ideal observer is shown the same exact stimulus

several times, it will always make exactly the same decision.  Unlike an ideal observer,

human observers have internal variability or 'noise' (Barlow, 1956, 1957; Green, 1964).
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This trial-by-trial variability is thought to originate from a variety of sources, ranging

from the stochastic properties of sensory neurons (Croner, Purpura, & Kaplan, 1993;

Tolhurst, Movshon, & Dean, 1983) to random fluctuations in strategy (Burgess, 1990;

Raghavan, 1989).  As a result, the same stimulus will not produce the same internal

response on every presentation.  Instead, they will produce a distribution of responses

across identical presentations, and the variance of this distribution will be determined by

the magnitude of the internal noise.  In the case of the discrimination task described

above, a human observer will have two distributions of internal responses, one for S0 and

one for S1.  Thus, for an observer limited by noise, the discrimination task described

above becomes one of determining from which distribution the internal response

originated.

A second way that human and ideal observers differ is in their ability to use

available information.  An ideal observer uses a computation that is guaranteed to make

optimal use of all of the information available in a given task.  Unlike an ideal observer,

human observers perform sub-optimal computations1.  These inefficiencies can arise from

many sources, ranging from sub-optimal encoding by sensory organs (Banks, Geisler, &

Bennett, 1987; Geisler, 1989) to the comparison of the sensory representation to a sub-

optimal receptive field or template (Legge, Kersten, & Burgess, 1987).
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This classical problem of signal-detection is illustrated schematically in Figure

1.1.  Figure 1.1 depicts a pair of hypothetical internal response distributions  produced by

a human observer in the discrimination task described above.  Each distribution is

centered about a mean response M and has a variance of σ2.  A common assumption of

signal detection models is that the underlying distributions are Gaussian distributed with

                                                                                                                                                      
1 Here, the discussion is restricted to non-stochastic (i.e., deterministic) inefficiencies in computation.

Stochastic inefficiencies are more appropriately described as internal noise.

Figure 1.1  Hypothetical internal response distributions for a discrimination task.  The leftmost
distribution corresponds to signal S0 and the rightmost to signal S1.  M0 and M1 are the means of the S0

and S1 distributions, respectively.  The distributions are assumed to have equal variances (σ2).  Under

these conditions, an observer's sensitivity (d') is equal to the difference between the means of the two
distributions normalized by their common standard deviation.
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equal variances (Green & Swets, 1966)2.  Under these conditions, an observer's

sensitivity (d') is defined as the distance between the two means, normalized by the

variance of the distributions.  In this abstraction, one way that an observer's sensitivity

can change is by altering the variance of the underlying distributions.  This would occur

if there were an increase or decrease in internal variability.  Notice that sensitivity would

also shift if the distance between the means of the internal distributions were to change.

Such a shift would not correspond to a change in the stochastic aspects of an observer's

computations.  Instead, it would reflect a change in the efficiency of the observer's

computations.  In terms of signal detection theory, a shift in the mean strengths of the

internal responses associated with each signal translates into a shift in the strength of the

internal signal.  Thus, in relation to perceptual learning, the changes in sensitivity that

take place with training could be due to a decrease in internal noise, an increase in

internal signal strength, or some combination of the two.

Measuring the Strength of Signal and Noise

Until recently, there were no techniques available to discriminate between

changes due to internal noise or signal strength.  Both kinds of changes predict changes in

                                                  
2  The assumption that the internal distributions are Gaussian with equal variance may be tested for a given

task by comparing an observer's hits and false alarms for different criteria (Green & Swets, 1966).
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sensitivity with learning.  However, psychophysical techniques have been developed in

recent years that, when used in combination, allow the effects of these quantities to be

disambiguated.  The techniques are called noise masking and response consistency.

Noise Masking

Referring the intrinsic noise of an electronic device to an external noise

introduced into the system is a standard technique used by electrical engineers (Mumford

& Schelbe, 1968).  However, Pelli (1981) was among the first to apply a variant of this

technique to human information processing.  Pelli developed measures that he called an

observer's equivalent input noise  and calculation efficiency--quantities that correspond to

Figure 1.2  A black-box model of a human observer in a perceptual discrimination task (adapted from

Pelli, 1981; 1990).  The observer is treated like a black-box that receives a noisy external stimulus (E +

Ne), introduces a fixed amount of variability to the stimulus (Ni), performs a calculation that is reduced to
an internal response, and makes a decision based on the magnitude of the internal response.
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an observer's internal noise and internal signal strength, respectively, within the context

of his signal detection model.  To fully understand these quantities and how they are

measured, it is useful to first consider Pelli's abstraction of the internal transformations

performed by an observer in a detection or discrimination task.  Pelli's 'black-box' model

of a linear observer is illustrated schematically in Figure 1.2.  In this model, the observer

receives a physical stimulus (in this case, a signal corrupted by an externally added

noise).  The stimulus is converted into an internal representation, where an internal noise

of fixed variance is introduced and a calculation is performed on the representation.  A

decision is then made based on the resulting internal response.  Notice that the model

characterizes the internal variability and calculation performed by the observer in purely

abstract terms: the effects of all sources of variability are treated as arising from a single

internal noise, and the effects of all computations are treated as arising from a single

computation3.  The model also assumes that the internal noise is added to the

representation, that the observer only performs linear transformations on the stimulus

until the stage of the decision, and that both the calculation and the variance of the

internal noise are invariant with respect to the magnitude of the stimulus.  In the

                                                  
3  A linear observer with multiple additive noise sources occurring before multiple calculations is

mathematically equivalent to an observer that has a single additive noise source equal to the combined
variances of the individual noise sources and performs a single combined calculation.  The issues involved

in the assumptions of linearity and early noise are discussed in Chapter 3.
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experiments reported in this thesis, the stimuli are visual images varying in contrast

across space.  Accordingly, these quantities will be referred to as contrast-invariant noise

and contrast-invariant calculations.

Given this framework, the observer's threshold will be linearly related to the

magnitude of the external noise (Legge et al., 1987).  This may be formalized as

E = k(Ne+Ni)                                                                                                                  (1.1)

where E is the energy of the signal at threshold, Ne is the external noise power spectral

density, and k  and Ni are free parameters (see Chapter 2 for formal definitions of energy

and noise power spectral density).  Often, this equation is log-transformed to obtain

log(E) = log(k) + log(Ne+Ni).                                                                                        (1.2)

The parameter Ni is referred to as the observer's equivalent input noise, and it is

equal to the amount of external noise that must be added to the display in order to double

the observer's noise-free threshold.  The equivalent input noise is expressed in the same

units as the external noise.  The parameter k is inversely proportional to the goodness or

'efficiency' of the observer's calculation.  An observer's calculation efficiency is computed
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by comparing k for a human observer to that an ideal observer, and is an index of the

proportion of the available information used by the observer.

In the context of the signal-detection problem outlined above, equivalent input

noise corresponds to the contrast-invariant internal stochastic constraints on performance

(i.e., internal noise) and calculation efficiency corresponds to the internal deterministic

Figure 1.3  Hypothetical noise-masking functions for a human observer.  Log of signal energy threshold
(E) is plotted as a function of external noise power spectral density (Ne).  The finely dashed line depicts a

reduction in equivalent input noise Ni by a constant factor c relative to the solid line.  The coarsely dashed
line depicts an increase in calculation efficiency (indexed by k) by a constant factor c relative to the solid
line.
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constraints on performance (i.e., internal signal strength).  Given this model of the

observer, it is possible to estimate the magnitude of an observer's internal noise and the

efficiency of the observer's calculations by measuring thresholds in various amounts of

externally added noise.  First, consider the effects of internal noise.  In Equation 1.2, it

can be seen that, at very low external noise levels, altering the magnitude of the external

noise will have little effect on an observer's threshold.  It is only once the magnitude of

the external noise begins to exceed the magnitude of the internal noise that thresholds

will begin to rise.  This relationship is illustrated in Figure 1.3.  The solid line in Figure

1.3 depicts a hypothetical noise-masking function for a human observer, where log

threshold energy (E) is plotted as a function of log external noise power spectral density

(Ne).  Ni corresponds to the amount of external noise that must be added to the signal in

order to double an observer's zero-noise threshold (solid arrow in Figure 1.3).  Thus, an

observer's internal noise in this model is estimated by finding the magnitude of external

noise that is equivalent to adding a fixed (i.e., contrast-invariant) level of noise to the

external stimulus (hence the name 'equivalent input noise').  The finely dashed line in

Figure 1.3 shows the effects of reducing this contrast-invariant noise Ni by a constant c.

Changing Ni in this fashion reduces thresholds at only low external noise levels, shifting

the 'kink point' of the noise-masking function to a lower value (the dashed arrow in

Figure 1.3).  Now consider the effects of calculation efficiency.  In Equation 1.2, it can be

seen that the index of calculation efficiency k will not have differential effects across
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external noise levels.  Instead, k will determine the overall 'height' of the noise masking

function in log-log coordinates.  The coarsely dashed line in Figure 1.3 shows the effects

of reducing k by the constant c.  Changing k in this fashion will shift the noise-masking

function down uniformly at all levels of external noise in a log-log plot.

Equivalent input noise and calculation efficiency have been measured for a wide

variety of tasks, including grating detection (Pelli, 1981), contrast discrimination (Legge

et al., 1987); letter discrimination (Pelli & Farell, 1999; Raghavan, 1989; Tjan, Braje,

Legge, & Kersten, 1995), object recognition (Tjan et al., 1995), divided attention (Dosher

& Lu, 2000; Lu & Dosher, 1998), and motion discrimination (Lu, Liu, & Dosher, 2000).

With one possible exception (Lu & Dosher, 1999), the form of the noise masking

functions have conformed well to the model, showing a linear relationship between

energy thresholds and external noise power spectral density.

However, there may be other sources of noise in the sensory systems that are not

invariant with respect to stimulus magnitude (i.e., the combined magnitude of the signal

and external noise).  The effects of such a contrast-dependent internal noise in Pelli's

black-box model can be seen by including a second independent noise source in Equation

1.1:

E = k(Ne+Ni + m(Ne+Ni+E)P).                                                                                       (1.3)
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where the proportionality constant m and the exponent P determine the magnitude of the

contrast-dependent internal noise.  However, there is both physiological (Tolhurst,

Movshon, & Dean, 1983) and psychophysical (Burgess & Colborne, 1988) evidence that

the contrast-dependent noise is directly proportional to stimulus magnitude (i.e., the

exponent P in Equation 1.3 is equal to unity).  The effects of a proportional noise in

Pelli's black-box model can be seen by setting P to unity in Equation 1.3:

        E = k(Ne+Ni + m(Ne+Ni+E))

= (k(1+m)/(1-km))(Ne+Ni)

= k'(Ne+Ni)

Figure 1.4  Revised black-box model of a human observer in a perceptual discrimination task.  The model

is identical to Figure 1.2, except for the inclusion of a contrast-dependent internal noise that depends
upon the combined magnitude of the external stimulus and the contrast-invariant internal noise.
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log(E) = log(k') + log(Ne+Ni)                                                                                       (1.4)

where k' is a constant equal to k(1+m)/(1-km).  Notice that k' is affected by changes in

both proportional noise (m) and calculation efficiency (k), making these two factors

confounded in the context of Pelli's black-box model.  Pelli (1990) is explicit about this

aspect of the model, and assumes that any proportional noise stems from the stochastic

properties of the contrast-invariant calculation (i.e., random changes in the calculation

across trials).  However, there may be sources of proportional noise other than a noisy

calculation (Lillywhite, 1981).  Thus, contrast-dependent noise is included as a separate

source of internal noise in the revised black-box model shown in Figure 1.4.

Response Consistency

Green (1964) and others (Burgess & Colborne, 1988; Spiegel & Green, 1981)

have devised a method of measuring internal noise that is independent of the

deterministic operations of the observer.  The technique is called response consistency,

and it takes advantage of the fact that internal noise will cause trial-by-trial variability in

an observer's internal responses to identical stimuli.  Consider again the task outlined

above, where observers must identify a signal presented in external noise.  If the signal

and noise shown on every trial of the experiment were recorded and then the exact same

trial-by-trial sequence was shown a second time, the task would be physically identical in
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both passes through the experiment.  The responses of a noiseless observer would also be

identical on each corresponding trial in the sequence.  However, for an observer with

internal noise, there would be response inconsistency between corresponding identical

trials in the two passes.  The ratio of internal to external noise would determine the

degree of inconsistency between the two passes.  The contrast-dependent component of

an observer's internal noise can be estimated by measuring response consistency under

conditions of high external noise (where the contribution of the contrast-invariant internal

noise will be relatively negligible).  Similarly, the contrast-invariant component of an

observer's internal noise can be estimated by measuring response consistency under

conditions of low external noise (where the contrast-invariant internal noise dominates)4.

In the context of perceptual learning, response consistency offers a way of measuring the

ratio of internal to external noise as a function of learning independently of changes in an

observer's calculation efficiency.

Measuring the Calculation

As described below in the overview, the results of the first series of experiments

in the thesis show that calculation efficiency changes with perceptual learning and the

                                                  
4 Note that measures of response consistency include the effects of photon noise, which cannot be
reproduced on corresponding trials.  Photon noise is often included in estimates of internal/external noise

ratios and equivalent input noise because of its relatively negligible effects.
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amount of both contrast-invariant and contrast-dependent internal noise remains fixed.

But what is it about observers' calculations that changes with practice?  The measure of

calculation efficiency only provides a gross index of the goodness of the calculation.  It

does not specify the nature of the transformations performed by the observer.

A technique developed by Ahumada and his colleagues (Ahumada & Lovell,

1971; Beard & Ahumada, 1998; Watson & Rosenholtz, 1997) called response

classification offers a way of addressing this problem.  Consider once again the

identification task outlined above.  On some trials, an observer will incorrectly classify

the stimulus.  For example, on some trials the observer will respond that the signal was S1

when, in fact, the signal shown was actually S0.  If the signal was embedded in a large

amount of external noise, there are two possible reasons for this mistake.  One possibility

is that internal contrast-dependent noise was high, causing the observer to misclassify the

stimulus.  A second possibility is that the external noise was distributed in such a way to

make the stimulus look more like S1 than S0.  As long as the internal contrast-dependent

noise is not excessively high, the external noise will affect an observer's classifications in

this fashion on many of the trials.  The noise fields shown on each trial can be recorded

and classified according to the identity of the signal shown and the response of the

observer.  After many trials, these noise fields can be averaged in each signal-response

category and summed across categories in such a fashion as to produce a classification

image (see Chapter 2 for a more formal treatment of computing classification images).
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The classification image is a map that shows the locations in the stimulus waveform that

have affected an observer's responses during the experiment.  More specifically, it shows

the correlation between the noise magnitude at each location in the waveform and an

observer's responses throughout the experiment.  In effect, it is an estimate of the linear

classification rule used by the observer.

The response classification technique has been applied to a variety of tasks,

including auditory (Ahumada & Lovell, 1971; Ahumada, Marken, & Sandusky, 1975)

and visual (Abbey, Eckstein, & Bochud, 1999; Ahumada & Beard, 1999) detection,

vernier acuity (Ahumada, 1996; Ahumada & Beard, 1998), letter discrimination (Watson,

1998; Watson & Rosenholtz, 1997), stereo vision (Neri, Parker & Blakemore, 1999) and

visual completion (Gold, Murray, Bennett, & Sekuler, 2000).  In the context of perceptual

learning, the response classification technique offers a way of specifying the nature of the

changes that occur in an observer's calculation over the course of training.

Overview of the Thesis

This section provides an overview of the main experimental results and

conclusions of the thesis.  The perceptual tasks in the thesis will be restricted to the

recognition of 2-dimensional visual patterns.  The general goal of the thesis is to specify

the changes that take place with perceptual learning within the context of the signal
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detection framework described above.  The overall conclusion is that it is only calculation

efficiency that changes with perceptual learning.

Chapter 2 covers most of the methods, terminology, and units used in the thesis,

although a few details have been left for Chapters 3 and 4.  The first part of Chapter 3

concerns the measurement of equivalent input noise and calculation efficiency as a

function of learning in two visual pattern identification tasks.  This first set of

experiments trace the changes in both of these quantities as observers learned to identify

10 unfamiliar human faces or 10 unfamiliar abstract textures (band-pass filtered noise

fields).  The results of these experiments show over a factor of 4 increase in calculation

efficiency for the face stimuli and over a factor of 2 increase for the texture with no

corresponding changes in equivalent input noise.  In addition, several other aspects of the

data are explored, including shifts in linearity and uncertainty across learning sessions,

within-session learning effects, and analysis of the face identification data according to

gender rather than individual items.

The second part of Chapter 3 addresses the possibility that contrast-dependent

internal noise contributed to the changes in calculation efficiency observed in the first set

of experiments.  Response consistency is used to measure the effects of both contrast-

invariant and contrast-dependent internal noise, as a function of learning.  Specifically,

response consistency is measured for both the face and texture stimuli, in both high and

low external noise.  The results show response consistency does not change with learning
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in the presence of either high or low external noise, even though performance improves

in the same fashion as in the first experiments.  These results rule out the possibility that

either contrast-invariant or contrast-dependent internal noise changes with learning in

these tasks, implying the perceptual learning is due only to changes in calculation

efficiency.  In addition, the predictions of a 'late' noise model (i.e., a model that assumes

all of the internal noise occurs after the calculation) are considered within the context of

these results.

The fourth and final chapter involves using the response classification technique

to explore the changes that take place in observers' calculations as a function of learning.

Classification images are measured across a series of learning sessions with two new

faces and two new band-pass textures5.  The main statistical test involves correlating a

human observer's classification image with the classification image of an ideal observer.

An ideal observer's classification image reveals the relative informativeness of each pixel

in the identification task.  Correlating the human observer's classification image with the

ideal classification image offers an index of how the observer's calculation changes with

                                                  
5  The reason for reducing the number of stimuli in each set is to increase the statistical power of the

analyses.  The response classification technique requires a large number of trials to produce a clear image

of an observer's classification rules.  Reducing the number of items to be learned increases the power of the
response classification technique, because the noise fields are sorted into a smaller number of stimulus-

response categories.  Despite this improvement in power, learning takes place over a relatively small
number of trials, so the analyses in Chapter 4 often rely upon statistical tests rather than visual inspection of

the classification images (see Chapter 2 for details on computing classification images).
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 learning.  The results of the first two experiments show that the correlation with the ideal

template increases with learning, indicating human classification rules become more ideal

with training.  A second experiment measures noise masking functions and response

consistency with the new face and texture stimuli, and shows that the changes in signal

and noise found in the previous experiment with 10 stimuli extend to a task with only two

stimuli.
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2                                                                                                           Methods
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This chapter describes the general experimental methods used throughout the

thesis.  Some of the methodological details specific to particular experiments are

discussed within their respective chapters.

Apparatus

Stimuli were displayed using a Macintosh G3 computer on a 13'' Apple high

resolution RGB color monitor.  The monitor displayed 640 x 480 pixels, which subtended

a visual angle of 12.9 x 9.6 degrees from the viewing distance of 100 cm, at a frame rate

of 67 Hz (non-interlaced).  Luminance calibrations were performed with a Hagner

Optikon universal spot photometer, and the calibration data were used to build a

linearized 1779-element look-up table (Tyler, Chan, Liu, McBride, & Kontsevich, 1992).

The experiment was conducted in the MATLAB programming environment (version

5.1), using in-house software and the extensions provided by the Psychophysics Toolbox

(Brainard, 1997) and the Video Toolbox (Pelli, 1997).  When constructing the stimuli

used on each trial, the computer software selected appropriate luminance values from the

calibrated look-up table and stored them in the 8-bit hardware look-up table of the

display.  Luminance on the display ranged between 0.3 and 80.2 cd/m2.  Average

luminance was defined as the luminance produced by the RGB combination

(160,160,160), which was 28.8 cd/m2.  Pixel contrast (as defined by equation 1 below) on

the display could be varied between -1.0 and 1.8.
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Signals

There were two classes of signals used in the experiments.  The first class of

signal were digital images (256 x 256 pixels in size) of human faces that were

constructed using Adobe Photoshop (version 3.0) and MATLAB.  The second class of

signals were randomly generated band-pass filtered Gaussian noise fields (also 256 x 256

pixels in size) generated using MATLAB (see below for details about the face and texture

images).  All of the images were created prior to the experiment and stored on disk.  The

values in each image represented the contrast (ci) at pixel location i, defined by Equation

2.1:

c
l L

Li
i= −

                                                                                                                   (2.1)

where L is average luminance and li is the luminance of the ith pixel.  Each image file was

normalized so that root-mean-square (RMS) contrast of the image equaled 1.  RMS

contrast is defined as

cRMS n
ci

i

n

= ∑
=

1 2

1

                                                                                                                  (2.2)
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where n is the number of pixels in the image.  Prior to each experimental session, the

appropriate image set was read into memory.  On each trial, the contrast of the image to

be displayed was set to the desired value by multiplying the image data by an appropriate

constant, and the contrast values were converted to luminance values.  These luminance

values were used to construct a linear 8-bit look-up table for the display.  Finally, the

image luminance values were mapped onto the values stored in the look-up table.

Faces

There were two sets of faces used in the experiments reported in this thesis.  The

first set, used in the noise masking and response consistency experiments reported in

Chapter 3, consisted of 5 male and 5 female Caucasian faces.  The second set, used in the

response classification experiments in Chapter 4, consisted of two Caucasian male faces.

All face models were members of the University of Toronto Department of Psychology.

Each face was photographed in front of a uniform black field.  Glasses, makeup, and any

other non-facial cues were removed from the models’ faces before being photographed.

Each model's hair was held away from the face and forehead by a small head cap.  None

of the models had facial hair.  All models were asked to look directly at the camera with a

neutral facial expression.  The film was developed directly to photographic CD-ROM,

and each picture was digitally converted to grayscale and cropped to show only the inner

portion of the face, eliminating non-facial cues such as hair and ears.  The shape of the
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visible region of each face was elliptical, and the size and height:width ratio were

constant across all stimuli (198 pixels:140 pixels; 4.0° x 2.9°).  The faces were centered

within a 256 x 256 pixel (5.25° x 5.25°) background of zero contrast (i.e., average

luminance).

The contrast values for each face were first linearly transformed so that they

ranged from -1 to 1 and the background was set to zero.  Next, differences in the

amplitude spectra of the faces within each set were eliminated in the following way:

First, the Fourier transform of each face was computed, and the modulus at each spatial

frequency and orientation was averaged across all faces.  After averaging, the DC

component was set to zero.  Finally, the amplitude spectrum for each face was replaced

by the average amplitude spectrum, and the inverse Fourier transforms were computed.

For each set of faces, the result of this process was a collection of faces with identical

amplitude spectra (Figure 2.1)6,7.

                                                  
6 The reasons for eliminating amplitude differences across faces are twofold.  First, these faces had been

generated in previous work to remove differences in the relative amplitude across frequency bands (Gold,
Bennett & Sekuler, 1999).  Second, amplitude differences across faces could lead to differences in stimulus

detectability, which could be used as cues to identify the faces.
7  The amplitude spectra of the original faces differed only slightly from each other, and so the appearance

of faces in Figure 2.1 did not differ significantly from the original items.
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Figure 2.1  The two sets of face stimuli used in the experiments.  The 10 faces on the left all share a
common Fourier amplitude spectrum, as do the two faces on the right (see text for details).
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Textures

Texture patterns were produced by randomly generating 256 x 256 pixel (5.25° x

5.25°) Gaussian white noise fields in MATLAB (see Display Noise below for details).

The noise fields were converted into the spatial frequency domain, and filtered with a 2-4

cycle per image (c/image) ideal filter.  The amplitude of all frequencies outside of the 2-4

c/image pass-band (including the DC component) were set to zero, and the amplitude

within the pass-band remained unchanged.  The images were then converted back into the

spatial domain8.  This low-frequency filtering produced the sets of blob-like textures,

shown in Figure 2.2.  As with the face stimuli, there were two sets of textures used in the

experiments reported in this thesis.  The first set, used in the noise masking and response

consistency experiments reported in Chapter 3, consisted of 10 unique textures.  The

second set, used in the response classification experiments in Chapter 4, consisted of two

unique textures.

Display Noise

The techniques used in this thesis rely heavily on corrupting signals with

externally added noise.  In all of the experiments reported in this thesis, the external noise

                                                  
8 Unlike the face stimuli, the amplitude spectra of the textures were not averaged.  This is because Gaussian
noise has equal power (on average) at all frequencies and the same filter was applied to each noise field.

This made the differences in power across the texture patterns negligible.
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Figure 2.2  The two sets of texture stimuli used in the experiments.  Each texture is a randomly generated
Gaussian noise field, filtered by a 2-4 cycle per image rectangular frequency filter (see text for details).
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added to the signal at each pixel was created by drawing a random sample from an

independent Gaussian distribution of contrast values, with a mean of 0 and a variance as

required by the condition.  The values were produced in MATLAB with a pseudo-

random number generator.  The noise on each trial was static (i.e., did not temporally

vary during the course of a trial), white (i.e., the power spectral density did not vary with

frequency) and was matched to the size of the signal (256 x 256 pixels).  Values beyond

+/-2 standard deviations from the mean were discarded and replaced by random samples

from the remaining contrast values.

Figure 2.3  Viewing conditions during the experiments.  The observer was positioned at a distance of 100
cm from the CRT, with his or her head stabilized by a chin rest.
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Viewing Conditions

Viewing was binocular through natural pupils, and a headrest/chinrest stabilized

the observer’s head throughout the session (see Figure 2.3).  The monitor supplied the

only source of illumination during the experiment.

Human Observers

All participants had normal or corrected-to-normal visual acuity (self-reported).

Participants ranged from 17 to 35 years of age, with a mean age of 24 years.

Tasks and Procedure

All experiments involved single-interval, 1-of-m identification tasks, where m

corresponds to the number of signals in the set.  The signal energy and power spectral

density of the noise were varied according to the procedures detailed in the threshold

estimation section below.  Observers were familiarized briefly with high contrast versions

of the stimuli before the beginning of each experiment.  At the start of each trial, a

fixation point appeared at the center of the screen (3 x 3 pixels in size), and a brief tone

indicated a trial could commence with a mouse click.  After the mouse was clicked, the

stimulus (signal + noise combination) appeared for 34 frames (approximately 500 ms).

Next, the display was set to average luminance, and after a brief 100 ms pause, 100 x 100

pixel high contrast thumbnail versions of the m possible signals appeared on the screen



34

surrounding the region where the stimulus had been displayed.  Observers identified the

stimulus by clicking the mouse on the appropriate image.  Once an image was chosen, the

displays were cleared and set to average luminance.  Auditory feedback after each trial

indicated the accuracy of the response.

Threshold Estimation

In all of the experiments reported in this thesis, identification thresholds at each

level of external noise were measured by varying signal energy across trials.  There were

two different psychophysical methods used to estimate observer thresholds.

In the noise-masking experiments reported in Chapter 3, signal energy was

manipulated according to the method of constant stimuli.  Pilot studies identified several

signal energy levels that spanned the threshold range for a typical unpracticed observer in

each level of external noise power spectral density.   Signal energy E is defined as

E = (cRMS)
2(n)(a)                                                                                                             (2.3)

where n is the number of image pixels and a is the area of a single pixel, in degrees of

visual angle squared.  Noise power spectral density N is defined as

N = σ2a                                                                                                                           (2.4)
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where a is as defined above and σ is the standard deviation of the noise, expressed in

values of contrast.  Signal energy levels were adjusted after each session for each

observer as required by their rate of learning.  Before each trial, a signal was chosen

randomly to appear within the stimulus interval.  There were the same number of trials at

each signal energy level.  Trials within each session were completely randomized with

respect to signal energy and noise power.

In the response consistency experiments reported in Chapter 3 and the response

classification experiments reported in Chapter 4, signal energy was manipulated using a

UDTR ('up-down-transformed-response') adaptive staircase procedure.  In the case of the

response consistency experiments, two interleaved staircases were used to obtain

measurements that spanned the range of the psychometric function.  In the case of the

response classification experiments, a single staircase was used to maintain a relatively

constant level of performance throughout the experiment and to avoid presenting trials

that fell largely outside of the threshold range.  Signal energy levels were chosen that

coarsely sampled a range of several log units.  The staircase shifted through these levels

according to the accuracy of the observer's responses.  In the response consistency

experiments, the first staircase used a 1-up-1-down rule  (i.e., when the observer made an

incorrect response, the signal energy level was increased by 1 sample; when the observer

made a correct response, the signal energy level was reduced by 1 sample).  The second

staircase used a 1-up-2-down rule (i.e., when the observer made an incorrect response,
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the signal energy level was increased by 1 sample; when the observer made two

consecutive correct responses, the signal energy level was reduced by 1 sample).  The 1-

up-2-down rule was also used in the response classification experiment.  The staircases

maintained this process throughout each experimental session.

For all of the experiments, psychometric functions were estimated by maximum-

likelihood fits to the data.  The fitting function was of the form

p e
E

= − −




1 1( )γ α

β

                                                                                                         (2.5)

where p is percent correct, E is signal energy, γ is the guessing rate, and α and β are free

parameters.  Threshold was defined as the signal energy yielding either 50% correct

responses (in the case of 10 possible signals) or 71% correct responses (in the case of two

possible signals).  Confidence intervals for the fitted parameters and threshold estimates

were calculated by bootstrap simulations.  Each simulation consisted of at least 500

simulated data sets.
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Ideal Observer

The ideal decision rule for the tasks and stimuli reported in this thesis is

max { }..j m ij i
i

n

T R=
=
∑1

1
                                                                                                        (2.6)

where m is the number of possible signals, n is the number of pixels in each signal, Tij is

the ith pixel in the jth noise-free normalized signal, and Ri is the ith pixel in the noisy

stimulus.  This rule amounts to maximizing the cross-correlation between the stimulus

(i.e., signal + noise combination) and each of the m possible signal matrices (templates).

This rule is proven in the Appendix.  Ideal observer thresholds were obtained in all

conditions through Monte Carlo simulations, in which each template was compared to the

stimulus at a range of signal energy values for each corresponding noise level tested with

human observers.  For each trial, the ideal observer simply chose the template that

yielded the highest cross-correlation with the stimulus.  Ideal thresholds were estimated

from psychometric functions that were fit to the data (using the procedure described

above in the section on threshold estimation) from at least 10,000 simulated trials.
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Equivalent Input Noise and Calculation Efficiency

Recall from Chapter 1 that an observer’s equivalent input noise and calculation

efficiency are estimated by measuring signal identification energy thresholds across a

range of external noise power spectral density levels.  Equation 1.1 is fit to the thresholds,

with the negative x-intercept Ni as the estimate of contrast-invariant internal noise and the

slope k as an index of efficiency.  As with the external noise, Ni is expressed in units of

power spectral density.

It can be shown (Tjan et al., 1995) that the ideal observer's signal identification

energy threshold is a linear function of noise power spectral density, i.e.

Eideal = kidealNe                                                                                                                   (2.7)

where Ne is the power spectral density of the external noise.  The slope parameter kideal

varies with the set of signals and is directly related to the intrinsic difficulty of the task

(i.e., the similarity of the templates).  The human observer's calculation efficiency η is

defined as

η = kideal/k.                                                                                                                      (2.8)
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Fits to both ideal and human thresholds were estimated by maximum-likelihood

minimization, and bootstrap simulations provided confidence intervals for the fitted

parameters (minimum 500 simulated experiments).

Internal / External Noise Ratio

This section describes the methods used in this thesis to estimate an observer's

internal/external noise ratio (I/E).  Recall from Chapter 1 that a difficulty associated with

interpreting the estimates of calculation efficiency obtained using the methods above is

that the parameter k is influenced by both the efficiency of internal calculations and any

noise in the system that grows in proportion to the magnitude of the stimulus.  Thus,

changes in k can be due to changes in calculation efficiency, contrast-dependent internal

noise, or both.  However, response consistency can be used to tease these influences

apart.  Specifically, response consistency can be used to estimate an observer's I/E at high

external noise levels (where internal contrast-dependent noise dominates) and low

external noise levels (where internal contrast-invariant noise dominates).  These measures

reveal to what degree internal contrast-dependent noise contributes to the magnitude of k

(assuming it is proportional to stimulus magnitude) and whether internal contrast-

dependent noise changes as learning occurs.

The response consistency experiments reported in this thesis involved having

observers make two consecutive passes through identical experiments within a given
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experimental session.  Specifically, observers were shown a particular sequence of

stimuli in the first half of the session (according to one of the threshold estimation

procedures discussed above).  In the second half of the session, the exact same stimuli

were reproduced in exactly the same sequence.  An observer with no internal noise would

be perfectly consistent between corresponding trials of the two passes through the

Figure 2.4  Hypothetical curves demonstrating the relationship between percent correct and percent
agreement in a double-pass response consistency experiment for an observer with various internal/external

noise ratios.  Each line is described by Equation 2.9.  The rightmost dashed line corresponds to a noiseless
observer.  Each solid line corresponds to the performance of a noisy observer with a particular

internal/external noise ratio.  The slope of the line is inversely related to the internal/external noise ratio.
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experiment.  If we were to plot the percentage of agreement of responses between the two

sessions as a function of percent correct responses for such a noiseless observer, it would

look like the dashed line shown to the right in Figure 2.4.  However, if this observer were

to have internal noise, percent agreement would decrease for each level of percent correct

(Burgess & Colborne, 1988).  The performance of a noisy observer would be well

approximated by one of the solid lines shown to the left in Figure 2.4.  These lines follow

the form

pc = kI/Elog10(pa/100) +100                                                                                            (2.9)

where pc is percent correct performance at a given level of signal energy, pa is the

percent agreement between the two runs, and kI/E is a free parameter.  Each line

corresponds to the performance of an observer with a particular I/E.  Larger values of I/E

produce lower values of kI/E.  Thus, a particular I/E will coincide with an observed level

of inconsistency.  The exact relationship between I/E and kI/E is task dependent, but in the

tasks reported here, it is has been fit by a function of the form

I E e ek kI E I E= + +− −α γ γβ β
1 2

1 2/ /                                                                                      (2.10)
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where α, γ1, γ2, β1 and β2 are free parameters.  Simulated observers with a range of I/E's

were implemented in MATLAB to determine the parameters for equation 2.10 for the 1-

of-10 and 1-of-2 identification tasks reported in this thesis.  Figure 2.5 shows the

relationship between I/E and kI/E for the simulated observers in these tasks.  Maximum-

likelihood minimization was used to fit equation 2.9 to the human data, and bootstrap

Figure 2.5  Relationship between internal/external noise ratios and slopes of functions of the form

described in Figure 2.4 for 1-of-2 and 1-of-10 identification tasks.  Each curve is the fit of Equation 2.10 to
the simulated data of a noisy cross-correlator.
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simulations were used to produce confidence intervals for the parameters (minimum 500

simulated experiments).  The fitted parameters for Equation 2.10 for the appropriate task

were then used to estimate I/E's for each human observer9.

Classification Images

This final section describes the methods used in this thesis for computing

classification images.  Recall from Chapter 1 that a classification image reveals the

stimulus locations that have influenced an observer's responses over the course of an

experiment.  This is achieved by corrupting signals with external noise and correlating

the noise contrast at each location with an observer's responses across trials.  In order to

insure the noise is having an effect on an observer's responses, a high level of external

noise is used in conjunction with an adaptive staircase to maintain threshold performance.

After the data are collected, the first step in computing the classification images

for a task is to average the noise matrices point-by-point according to each signal-

response combination.  In the case of only two signals, there will be four signal-response

                                                  
9 The fitted parameters for the 1-of-10 identification task are: α = 0.1148, γ1= 4.0700, γ2 = 75.9068, β1 =

0.0134, β2 = 0.0358.  The fitted parameters for the 1-of-2 identification task are: α = 0.0727, γ1= 1.0755, γ2

= 141.5219, β1 = 0.0027, β2 = 0.0329.
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combinations: S1R1, S1R2,S2R1 and S2R210.  These four images may be combined to

form a single image C as follows:

C = (S1R2 + S2R2) - (S1R1 + S2R1).                                                                          (2.11)

C is the observer's raw classification image.  Unfortunately, it is often difficult to detect

features in the raw classification image by visual inspection11.  There are two major ways

to address this issue.  The first way is to smooth the classification images to remove some

of the extraneous noise.  The second way is to rely on statistical tests.  Both of these

methods are used to analyze the classification images reported in Chapter 4.

Frequency Filtering

In the case of the texture identification task, the signal is highly localized in the

frequency domain (2-4 c/image).  This aspect of the stimulus suggests a convenient filter

to apply to the classification images, namely one that is matched to the stimulus (i.e., a 2-

4 c/image ideal filter).  However, the power spectrum of the faces is not highly localized

in frequency space: like most natural images, it falls off in inverse proportion to spatial

                                                  
10  The response classification experiments in this thesis were restricted to two possible signals, so only this
special case is considered here.  However, see Watson (1998) for an example of a 1-of-3 identification task.
11  This is presumably due to masking by high spatial frequencies in the noise.
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frequency.  Previous data (Gold et al., 1999a; Nasanen, 1999) have shown observers

make especially efficient use of frequencies within a 2-octave wide band centered around

6 c/face, with efficiency gradually declining above and below the center frequency.  This

suggests an appropriate filter to apply to the face classification images would be a 2-

octave wide frequency filter centered at 6 c/face.  Unlike the filter for the texture

classification images, the filter used in the face identification experiments reported in

Chapter 4 was not ideal; rather, it was Gaussian in shape in log-frequency space, falling

to half-height at 1 octave above and below 6 c/face.

Statistics

The most straightforward statistical test is to correlate the unfiltered classification

image obtained from a human observer with the classification image of an ideal decision

rule.  For a 1-of-2 identification task, the ideal observer's classification image (template)

is simply the difference between the two possible signals, i.e.

Cideal = T2-T1.                                                                                                                 (2.12)

This rule is proven in the Appendix.  The 'goodness' of a human observer's classification

image can be computed by measuring it's cross correlation with the ideal template, i.e.
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i

n

=
=
∑

1

.                                                                                                           (2.13)

When C is normalized to unit variance and Cideal is normalized to unit energy, the

significance of the correlation can be computed by a z-test on the quantity G.

A second statistical test can be performed to remove the pixels from the

classification that fall outside of some criterion level of significance.  In the case of the

raw classification image, the expected variance of each pixel is equal to the sum of the

expected variances from each signal-response category.  All of the pixels falling within

some criterion number of standard deviations can then be replaced with zero contrast

pixels.  Both of the above tests are used to evaluate the classification images in the

experiments reported in Chapter 4.
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3                    Internal Noise and Calculation Efficiency in

Pattern Identification Learning
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Introduction

This chapter presents the data from the experiments investigating the effects of

perceptual learning on internal noise and calculation efficiency.  It involves two main sets

of experiments.  The first set of experiments involve measurement of equivalent input

noise (i.e., contrast-invariant internal noise) and calculation efficiency as observers learn

to identify unfamiliar patterns.  As discussed in Chapter 1, measurement of individual

thresholds does not allow us to discriminate between the impact of contrast-invariant

internal noise and calculation efficiency on performance.  However, these factors can be

teased apart by measuring two or more thresholds in sufficiently different magnitudes of

external noise.  Thus, the first set of experiments in this chapter consist of measuring

signal identification energy thresholds in a range of external noise power spectral

densities, across a series of learning sessions.  Measures of equivalent input noise and

calculation efficiency are then derived from these data, allowing us to trace any changes

in these quantities as learning takes place.

The second set of experiments involve measurement of the contribution of

internal contrast-dependent noise to the effects of learning found in the first set of

experiments.  As discussed in Chapter 1, changes in calculation efficiency and changes in

proportional contrast-dependent noise have identical effects on thresholds across external

noise levels (within the context of the black-box model described in Chapter 1).  In the

absence of an independent measure of contrast-dependent internal noise, there is no way
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to disentangle the effects of these two factors.  Thus, the second set of experiments use a

different method -- response consistency -- to quantify the amount of contrast-dependent

internal noise within the observer as learning takes place.

Two different kinds of patterns -- human faces and abstract textures -- were used

as signals in the experiments reported in this Chapter.  The rationale for using these two

different kinds of patterns stems from recent debate regarding the mechanisms that

mediate the perception of human faces.  There is some evidence that there are specialized

cortical mechanisms devoted to face perception (Kanwisher, McDermott, & Chun, 1997;

Perrett, Hietanen, Oram, & Benson, 1992), while other evidence suggests the apparent

special status of faces is rooted in expertise (Gauthier, Skudlarski, Gore, & Anderson,

2000; Gauthier & Tarr, 1997; Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999).

Faces were used in the current experiments because they reflect a complex, real-world

perceptual learning problem that the visual system must solve on a relatively continual

basis.  However, if learning to recognize novel faces is mediated by face-specific

mechanisms, the effects of learning may not apply to other kinds of patterns.  The texture

identification task was used to address this issue.  The textures were used because they

are spatially dissimilar to faces but are similar in complexity.
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Equivalent Input Noise and Calculation Efficiency

This section consists of two main experiments and several post-hoc analyses.  As

mentioned above, the experiments in this section involve the measurement of equivalent

input noise and calculation efficiency for the identification of faces (Experiment 3.1) and

textures (Experiment 3.2) as perceptual learning takes place.  Both experiments rely on

the theoretical framework described in Chapter 1 and many of the general methods

described in Chapter 2.  Only the aspects of the methodology specific to the current set of

experiments are presented here.

Methods

Stimuli.  The stimuli used were the sets of 10 faces and 10 textures shown in

Figures 2.1 and 2.2.  In each task, signal energy identification thresholds were measured

in five different levels of external noise power spectral density.  For the face task, the

external noise levels were: 0.04, 0.20, 1.02, 5.11 and 25.55 x 10-6 deg2.  Pilot studies

suggested that equivalent noise was higher for the texture identification task, so the

lowest external noise level was removed and replaced by a higher noise level of 51.10 x

10-6 deg2.  A unique noise field was generated on every trial.

Procedure.  Signal energy thresholds were estimated according to the method of

constant stimuli.  Pilot studies identified five initial signal energy levels that spanned the

threshold range in each level of external noise.  The signal energy levels were adjusted
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after each session as necessary (given the rate of learning).  There were 31 trials per

stimulus energy level within each session, yielding a total of 775 trials (31 trials x 5

signal levels x 5 noise levels).  The level of external noise, signal energy and the identity

of the signal were chosen randomly on each trial.  Each session was completed without

breaks and lasted about one hour.  Only one session was completed each day.  Observers

in the face identification task completed six sessions within ten days.  Observers in the

texture identification task completed four sessions within seven days.

Observers.  There were two observers that participated in each task, with one

observer (AMC) participating in both tasks.  One observer was the author (JMG) and the

remaining two observers were naive to the purposes of the experiment.

Experiment 3.1:  Face Identification

Psychometric functions for one observer (CGB) in the face identification task are

shown in Figure 3.1  Each panel corresponds to a different level of external noise within

a particular session.  Each row corresponds to a different session, progressing from the

first to the last, from top to bottom.  Each column corresponds to a different external

noise level, progressing from lowest to highest, from left to right.  The symbols in each

plot correspond to the empirically measured level of percent correct performance at a

given level of signal energy.  The smooth curves are maximum-likelihood fits to

Equation 2.5.
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Figure 3.1  Psychometric functions plotting proportion correct as a function of signal energy for one

observer (CMG) in the 1-of-10 face identification experiment.  Each panel corresponds to performance at
a particular level of external noise during a given session.  Each row corresponds to a different session,

with the sessions proceeding in sequence from top (first session) to bottom (last session).  Each column
corresponds to a different level of external noise power spectral density, with the external noise levels

proceeding in sequence from the left (lowest noise level) to the right (highest noise level).  The data

points in each plot are the empirical measures of percent correct for each corresponding signal level, and
the solid lines are the maximum likelihood fits to Equation 2.5.  Error bars on each symbol correspond to

± 1 standard deviation.
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Careful inspection of the plots reveal shifts to higher signal energy levels from left to

right in each row.  This shift corresponds to an increase in threshold with increasing

external noise magnitude beyond the level of contrast-invariant internal noise.  The

curves also shift to lower signal energy levels from top to bottom across sessions in each

column.  This shift is due to the effects of learning.

Both of these effects are summarized in Figure 3.2, which shows the 50% correct

threshold signal energy levels as a function of external noise power spectral density for

two observers in the face identification task across all six sessions.  Each symbol

corresponds to a single threshold.  The filled symbols correspond to the first three

sessions, the open symbols the last three sessions.  The smooth curves are maximum-

likelihood fits to Equation 1.1.  The goodness of the fits can be expressed in terms of r2,

which indicates the proportion of variability in the thresholds across external noise levels

that is accounted for by the parameters of Equation 1.1.  The r2 values for both observers

AMC CGB
Session r2 F p r2 F p

1 0.9681 91.07 3.92e-05 0.9988 2500.41 1.06e-08
2 0.9968 951.75 1.18e-07 0.9990 3043.44 6.46e-09
3 0.9969 976.75 1.10e-07 0.9962 789.40 1.86e-07
4 0.9955 664.08 2.88e-07 0.9981 1649.09 2.98e-08
5 0.9999 23762.60 3.80e-11 0.9973 1110.79 8.00e-08
6 0.9957 703.09 2.50e-07 0.9926 407.19 9.74e-07

Mean 0.9922 4524.89 6.66e-06 0.9970 1583.39 2.15e-07

Table 3.1  Statistics for linear threshold fits across sessions in the face identification task (see text for

details).
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in each session are summarized in Table 3.1, along with F statistics that indicate the

significance of the fits. The r2 values for both observers in almost every session were

above 0.99 (with the exception of 0.97 for observer AMC in the first session), indicating

the effect of noise on thresholds in this task is well characterized by a linear function.

Inspection of Figure 3.2 reveals a clear trend across sessions for both observers.

Namely, the height of the function shifts down uniformly across external noise levels

with practice.  However, the kink point in the functions remains constant across sessions.

Recall from Chapter 1 that this kind of shift in the noise masking function (in log-log

axes) is consistent with the effects of increased internal signal strength with no

corresponding decrease in the strength of internal contrast-invariant noise.  These effects

can be seen more clearly in Figure 3.3, which plots calculation efficiency and equivalent

input noise for both observers, as a function of practice.  Recall from the previous

chapters that calculation efficiency corresponds to the height of the noise masking

function (normalized by the performance of the ideal observer) and equivalent input noise

corresponds to the kink point of the noise masking function.

There are several interesting aspects to note about these data.  First, there is a

striking increase in calculation efficiency across sessions but almost no change in internal

noise: calculation efficiency increased by a factor of 4.4 for observer AMC and 4.3 for

observer CGB with practice.  Second, the effects of learning occurred mostly in the first

three experimental sessions.  These sharp increases in efficiency at the beginning of
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Figure 3.2  Noise masking functions for the two observers in the 1-of-10 face identification task across

six sessions.  Each panel plots the observer's signal energy thresholds (defined as 50% correct) as a
function of external noise power spectral density.  The filled symbols correspond to the first three

sessions, the open symbols the last three sessions (see legend).  Solid lines correspond to maximum-
likelihood fits to Equation 1.1.  Error bars on each symbol correspond to ± 1 standard deviation.  In this

figure, the error bars are smaller than the symbols.
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Figure 3.3  Calculation efficiency (top panel) and equivalent input noise (bottom panel) as a function of
experimental session for the two observers in the 1-of-10 face identification task.  Error bars on each

symbol correspond to ± 1 standard deviation.  In this figure, the error bars are smaller than the symbols.
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training suggest there could be learning taking place within individual sessions (Fahle et

al., 1995; Gilbert, 1994).  This possibility is considered in the Discussion section below.

Third, the estimates of calculation efficiency after learning are consistent with previous

measures of efficiency for familiar face identification (Gold et al., 1999a).  The absolute

efficiencies in both cases are only about 1-2%, significantly lower than for other complex

patterns (see Gold et al. (1999) for a summary).  However, as Burgess (1990) points out,

these measures of efficiency incorporate limitations imposed by contrast-dependent

internal noise, and therefore should be considered lower bounds.  The effects of contrast-

dependent noise on face and texture identification efficiency will be considered below in

the second half of this chapter.

Experiment 3.2:  Texture Identification

As mentioned in the introduction, the recent controversy over the nature of face

perception makes it necessary to test the generality of the effects found above in the face

task.  This issue was addressed by having observers learn to identify the set of 10 abstract

texture stimuli described in Chapter 2.  The noise masking functions for two observers in

the texture identification task are shown in Figure 3.4.  One of the observers (AMC) also

participated in the face identification experiment.  The r2and F statistics for the fits are

shown in Table 3.2.  Figure 3.5 traces the changes in calculation efficiency and

equivalent input noise across sessions for both observers.
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Figure 3.4  Noise masking functions for the two observers in the 1-of-10 texture identification task across

four sessions.  Each panel plots the observer's signal energy thresholds (defined as 50% correct) as a
function of external noise power spectral density.  The filled symbols correspond to the first two sessions,

the open symbols the last two sessions (see legend).  Solid lines correspond to maximum-likelihood fits to
Equation 1.1.  Error bars on each symbol correspond to ± 1 standard deviation.  Often, the error bars are

smaller than the symbols.
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Figure 3.5  Calculation efficiency (top panel) and equivalent input noise (bottom panel) as a function of
experimental session for the two observers in the1-of-10 texture identification task.  Error bars on each

symbol correspond to ± 1 standard deviation.  Often, the error bars are smaller than the symbols.
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It is clear from these data that practice produced a uniform downward shift in

thresholds across external noise levels in the texture task just as it did in the face task.

These results suggest it is unlikely that the learning effects found with faces are mediated

by face-specific mechanisms.  Instead, they most likely reflect the more general effects of

learning in a complex pattern identification task.  However, there are also some

interesting differences between the results from the two tasks.  First, learning reached a

plateau earlier for the textures than for the faces.  Also, the effect of learning was

significantly lower in magnitude for the textures than for the faces: AMC improved by a

factor of 2.3 and JMG by a factor of 2.9, nearly a factor of 2 less than the observers in the

face identification task.  Second, equivalent input noise is higher for textures than for

faces.  This result is surprising, because it is often thought that equivalent input noise

reflects the effects of contrast-invariant internal noise occurring relatively early in the

visual system (Pelli, 1981, 1990).  If so, changing the task should have little or no effect

on estimates of equivalent input noise (unless the noise depends on certain aspects of the

stimuli, such as local contrast).  The fact that equivalent noise was found to be

significantly higher for texture identification is consistent with the existence of a central

or 'late' contrast-invariant noise (see Raghavan (1989) for an in-depth treatment of

localizing the sources of equivalent input noise).
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Discussion

Taken together, the results of the above experiments offer compelling evidence

that perceptual learning increases internal signal strength but has no discernable effect on

the strength of internal contrast-invariant noise.  This interpretation rests upon a

particular model of the human observer.  In its simplest form, the observer is modeled as

constrained by contrast-invariant internal noise and the efficiency of internal calculations.

However, as discussed in Chapter 1, this simple model may be elaborated to included

other plausible constraints.  Most notably, the model does not allow us to discriminate

between the effects of changes in calculation efficiency and changes in an internal noise

that grows in proportion to stimulus energy.  Both have the effect of uniformly reducing

the height of the noise masking function on log-log axes.  Within the context of the

present experiments, the effects of learning could be due to changes in calculation

efficiency or changes in internal proportional contrast-dependent noise (or both).  This

AMC JMG
Session r2 F p r2 F p

1 0.9874 234.58 3.82e-06 0.9726 71.050 1.90e-4
2 0.9994 4913.76 1.95e-09 0.9969 954.28 1.17e-07
3 0.9976 1248.09 5.98e-08 0.9716 106.57 2.67e-05
4 0.9273 38.28 3.14e-4 0.8976 26.30 7.51e-4

Mean 0.9779 1608.68 7.94e-05 0.9599 289.55 2.42e-4

Table 3.2  Statistics for linear threshold fits across sessions in the texture identification task (see text for

details).
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issue is the subject of the next set of experiments, where response consistency is used to

disentangle the effects of calculation efficiency and contrast-dependent internal noise.

However, before turning to the consistency measures, it is useful at this point to

step back and explore some additional aspects of the noise masking data, including: (1)

the assumptions of linearity and the effects of stimulus uncertainty in relation to the

shapes of the psychometric functions and the effects of learning; (2) within-session

learning effects; and (3) learning of gender in the face identification experiment.

Linearity, Uncertainty and the Psychometric Function.  One of the implicit

assumptions of the model outlined in Chapter 1 is that the observer only performs linear

transformations upon the stimulus.  The model also assumes that the observer has no

intrinsic uncertainty about various aspects of the stimulus, most notably its location.

However, several recent models of pattern detection and discrimination incorporate the

effects of point-wise non-linearities (Lu & Dosher, 1999), stimulus uncertainty (Eckstein,

Ahumada, & Watson, 1997; Eckstein, Whiting, & Thomas, 1996; Manjeshwar & Wilson,

2001a, 2001b) or both (Solomon, Lavie, & Morgan, 1997; Watson & Solomon, 1997).

Each of these factors will affect the shape of an observer's psychometric functions.

Specifically, the psychometric function in Gaussian external noise for a linear observer

with no stimulus uncertainty will be linear, when expressed in terms of d' (instead of

percent correct) and signal contrast (instead of energy).  This is illustrated by the diagonal

line in Figure 3.6.  However, this relationship can break down at low signal contrasts in
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the presence of either an accelerating non-linearity or stimulus uncertainty.  This effect is

illustrated by the bottom three curves in Figure 3.6.  The amount of uncertainty and the

degree of the non-linearity manifest themselves in the form of a rightward shift in the

Figure 3.6  Demonstration of the effects of either stimulus uncertainty or an accelerating non-linearity on
the shape of an observer's psychometric function.  A linear observer with no uncertainty will have a linear

psychometric function (diagonal line) when plotted in terms of d' and signal contrast.  Both uncertainty

and an accelerating non-linearity will have the effect of making the psychometric function non-linear.  The
curved lines show psychometric functions for observers with increasing uncertainty and/or non-linearity

from left to right.  The largest effects are at low signal contrasts.  The dashed lines show how the estimate
of contrast threshold for a given level of d' depends on uncertainty and the degree of non-linearity.
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psychometric function at low contrasts: the greater the shift, the more uncertainty/non-

linearity.

One way to test for the presence of either of these effects is to compare d' ratios

and contrast ratios from a given psychometric function.  For a linear observer with no

stimulus uncertainty, the ratio of two different values of d' equals the ratio of the two

corresponding signal contrasts on a given psychometric function (Lu & Dosher, 1999).

However, this relationship breaks down in the presence of non-linearities and/or stimulus

uncertainty.  Specifically, decreasing either uncertainty or the degree of an accelerating

non-linearity will serve to decrease the estimate of threshold for a given level of d'.  This

is illustrated by the dashed lines in Figure 3.6, which show the corresponding contrast

threshold estimates for a given d' with various degrees of uncertainty and/or non-

linearity.

Our analysis of the face and texture data above ignored the possible effects of

non-linearities and stimulus uncertainty.  However, given the above argument, it is

possible that some or all of the effects of learning found in the first set of experiments

were due to decreases in either uncertainty or non-linearity across sessions.  That is,

decreases in the contributions of these two factors with learning would predict a

systematic decrease in threshold estimates for a given criterion level of percent correct

(or d') with practice.  This possibility was tested by making use of the equal d' and

contrast threshold ratio prediction of a linear model (Lu & Dosher, 1999).  The
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psychometric functions for all observers across all external noise levels and learning

sessions in the face and texture tasks were analyzed using this technique.  Two levels of

d' (1.0 and 2.0) were chosen for comparison.  These two levels correspond to percent

corrects of 0.34 and 0.67, respectively, in a 1-of-10 identification task (Macmillan &

Creelman, 1991).  These two values were chosen because they span a wide range within

the psychometric function, offering a strong test of the model.  For each psychometric

function and criterion percent correct, the corresponding signal energy level for each

percent correct was determined by computing the inverse of Equation 2.5, and signal

energy was then converted to contrast by computing the inverse of Equation 2.3.  The

prediction of a d' ratio of 0.5 for a linear observer was verified through computer

simulations.

The results of this analysis are shown in Figure 3.7.  The top panel corresponds to

the results from the face identification task, the bottom panel the texture identification

task.  Each panel shows the mean contrast ratios (averaged across external noise levels)

for each observer, as a function of experimental session.  The error bars on each symbol

indicate ± 1 standard deviation of the ratio estimates across external noise levels.  The

dashed line in each panel shows the ratio predicted by the linear model.  Although the

data are a bit noisy in the texture identification task, there is a clear shift away from

linearity as learning takes place.  Also note that, especially in the face identification task,

observers are close to the predictions of a linear model before learning has taken place.
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Figure 3.7  Ratios of the contrasts corresponding to two levels of d' (1.0 and 2.0) from the psychometric
functions of the two observers in 1-of-10 face (top panel) and texture (bottom panel) identification tasks.

The dashed line in each panel shows the predictions for a linear observer.  Each data point is the average
contrast ratio across external noise levels.  Error bars on each symbol correspond to ± 1 standard deviation.
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These results are inconsistent with the idea that the increases in calculation

efficiency found in the first set of experiments were due to decreases in either uncertainty

or the degree of point-wise non-linearities.  Instead, they show that learning produces the

non-intuitive result of increasing one or both of these effects.  What kinds of changes in

the visual system might predict these kinds of results?  One possibility is that learning

served to increase the number of templates used by observers to perform the task.  For

example, observers may have used only a few templates to make gross categorical

discriminations during the first session (e.g., one for males and one for females).  Then,

as learning took place, observers could have introduced additional templates, eventually

building up a much more elaborate set.  Such changes could produce improvements in

calculation efficiency (for example, if the templates became better matched to the

stimuli) but could also produce increases in uncertainty as the number of templates grows

(Eckstein, Ahumada, & Watson, 1997).  Comparison of Figures 3.3, 3.5 and 3.7 shows

that the patterns of across-session changes in calculation efficiency (Figures 3.3 and 3.5)

and non-linearity (Figure 3.7) are quite similar, which is consistent with the idea that the

number of templates used by observers increases with learning, producing parallel

increases in both calculation efficiency and uncertainty with practice12.

                                                  
12  These findings are also consistent with a recent model of template learning proposed by Beard and
Ahumada (1999).  Their model involves internal template refinement with practice, and predicts an

increase in the non-linearity of the psychometric function as learning takes place.
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Within-Session Learning Effects.  Figures 3.3 and 3.5 show that the majority of

learning in both the face and texture identification tasks took place within the first several

sessions.  However, these data do not reveal whether the learning took place within each

experimental session or required a period of consolidation, in the form of a delay between

sessions.  There is recent evidence for both fast, within-session learning (Fahle et al.,

1995; Gilbert, 1994) and slow, between session learning that requires either rapid-eye-

movement (REM) sleep or slow-wave sleep (SWS) (Stickgold, James, & Hobson, 2000;

Stickgold, Whidbee, Schirmer, Patel, & Hobson, 2000).  Thus, an interesting question is

whether the improvements in our face and texture identification experiments took place

within a particular session or if the learning required consolidation periods between

sessions.  Also, there may have been within-session changes in internal noise and

calculation efficiency that were obscured by the coarseness of the previous analysis.

To address these questions, the data from each session of the face and texture

identification tasks for each observer were subdivided into three successive blocks of

trials.  The first and second blocks consisted of the first and second sets of 258 trials,

respectively, and the third block consisted of the last 259 trials.  Each block was then

analyzed using the same methods described in Experiments 3.1 and 3.2.  The results of

this analysis are shown in Figures 3.8 and 3.9.  Each figure shows estimates of

calculation efficiency (top panels) and equivalent input noise (bottom panels) as a

function of trial block.  The vertical dashed lines indicate the beginning of each session.
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Figure 3.8  Within-session analysis of calculation efficiency (top panel) and equivalent input noise (bottom
panel) for the two observers in the1-of-10 face identification task.  Each session was separated into three

blocks and analyzed as in the original set of experiments.  Error bars on each symbol correspond to ± 1

standard deviation.
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Figure 3.9  Within-session analysis of calculation efficiency (top panel) and equivalent input noise (bottom
panel) for the two observers in the 1-of-10 texture identification task.  Each session was separated into

three blocks and analyzed as in the original set of experiments.  Error bars on each symbol correspond to ±
1 standard deviation.
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There are several interesting aspects to these data.  First, notice that these data are

far noisier that those obtained from the session-wise analysis.  The noisiness is due to the

fact that the psychometric fits were calculated from five stimulus levels that received

only 10 or 11 trials.  Second, with the possible exception of one observer in the texture

identification task, we find the same general effect of learning found previously: an

increase in calculation efficiency but no consistent change in equivalent input noise.  The

one exception is observer JMG in the texture identification task (open symbols in Figure

3.9), who shows a decrease in internal noise within the first session.  However, notice

that the data for these blocks are particularly noisy for this observer.  Third, there is some

weak evidence of within-session learning, most notably for observer AMC in the first and

third sessions of the face identification task.  However, it is difficult to draw very strong

conclusions given the noisiness of the data13.  Thus, this within-session analysis supports

the conclusions of the previous session-wise analysis of a change in calculation efficiency

but not internal noise with learning.

Gender Learning.  In the face identification task, observers were asked to identify

the specific face shown on each trial.  At the beginning of learning, the observers were

completely unfamiliar with the individual faces.  However, they were implicitly familiar

                                                  
13  A more reliable way to test for within-session effects might be to use an adaptive psychometric
procedure.  With a staircase it is possible to obtain a reliable threshold estimate with fewer trials (with the

consequence of a less reliable estimate of the shape of the entire psychometric function).
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Figure 3.10  Gender-wise analysis of calculation efficiency (top panel) and equivalent input noise (bottom
panel) as a function of experimental session for the two observers in the1-of-10 face identification task.

The data from the original experiment were analyzed according to the correctness of responses with
respect to the gender of the face rather than identify (circular symbols).  The data from the original

analysis according to identity are also plotted for comparison (triangular symbols).  Error bars on each
symbol correspond to ± 1 standard deviation.
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with the differences between genders (recall that there were five male and five female

faces in the set).  Because of this ability, observers may have defaulted to focusing their

efforts on making gender discriminations during the initial stages of learning.  This idea

is similar to Gibson's (1969) notion of differentiation, where initially indiscriminable

percepts progressively become distinct with practice.  This idea is also in accord with

more recent empirical work by Gauthier and Tarr (1997), where human observers were

able to learn basic level discriminations (e.g., gender) more quickly than subordinate

level discriminations (e.g., identity) when trained to recognize unfamiliar objects

(‘greebles’).  Further, the non-linearity analyses above showed that part of the learning

process involved increases in uncertainty, and these results are consistent with a model

where the observer increases the number of templates used to perform the task with

practice (i.e., a shift from gender-based to identity-based discriminations).  Thus, a

prediction of this model is that gender learning should occur primarily during the earliest

stages of training.  To explore this possibility, the data from the face identification

experiment were re-analyzed according to the correctness of the observer's response with

respect to the gender of the stimulus.  That is, the observer's responses were scored as

'correct' if their response matched the gender of the stimulus, regardless of whether the

response matched the stimulus identity.  There were five male and five female faces in

the set, and each was equally likely to appear on a given trial.  As a result, there was no

need to correct for unbalanced frequencies of occurrence.  Psychometric functions were
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fit to the data in each condition (with threshold defined as 71% correct).  All of the data

from both subjects and the ideal observer in the original face identification experiment

were re-analyzed in this fashion, allowing us to compute calculation efficiency and

equivalent input noise estimates for observers' ability to discriminate between male and

female faces14.

The results of this analysis is shown in Figure 3.10.  The top panel corresponds to

calculation efficiency estimates and the bottom panel equivalent input noise estimates for

the original two observers in the face identification task.  The data from the gender

analysis (large circular symbols) have been plotted along with the data from the original

identity analysis (small triangles) for reference.  Although the reanalyzed data are much

noisier than the original data15, they show the familiar trend of an increase in calculation

efficiency with no consistent change in equivalent input noise across learning sessions.

Interestingly, gender discrimination efficiency was consistently higher than identity

discrimination efficiency for both observers across sessions.  This is particularly

surprising, given that the task did not explicitly require observers to make discriminations

                                                  
14 Strictly speaking, the ideal decision rule in a categorical discrimination task (with more that one member
within each category) is no longer the simple cross-correlation rule described in the Appendix.  The ideal

observer's identification data was nonetheless re-analyzed in the same fashion as the human observers'

identification data because the human observers did not actually perform a gender discrimination task.
15 The noisiness of the data is due to the fact that the spacing of the stimulus levels was not tailored for a

gender discrimination task.  Specifically, the stimulus levels tended to be shifted to higher locations on the
psychometric functions (due to higher percent corrects), thus reducing the number of constraints placed on

the psychometric fits.
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according to gender.  Finally, learning did not appear to plateau significantly earlier for

gender discrimination that for identity discrimination.  However, it is important to note

that these two variables are highly confounded:  if identity learning occurs, performance

for both kinds of discriminations will improve.  As a result, the increase in gender

discrimination efficiency with learning may be an artifact of identity discrimination

learning.  Further experiments are necessary to tease these two factors apart.

Contrast-Dependent Internal Noise

The results of the Experiments 3.1 and 3.2 indicate that perceptual learning

improves calculation efficiency but has no effect on internal contrast-invariant noise.

However, as described in Chapter 1, the quantity we defined as 'calculation efficiency'

confounds the effects of the goodness of internal calculations with the effects of any

contrast-dependent internal noise that is proportional to the strength of the stimulus.

Thus, the above experiments do not allow us to distinguish between increases in

calculation efficiency and decreases in proportional contrast-dependent internal noise.

Double-pass response consistency in high external noise (where contrast-dependent

internal noise dominates) offers a way to discriminate between the impact of these two

factors.  Specifically, if decreases in proportional contrast-dependent internal noise

contributed to the increases in the estimates of calculation efficiency found in

Experiments 3.1 and 3.2, observers should become more consistent as learning takes
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place in large amounts of external noise.  This will show up as an increase in responses

consistency between passes through identical sets of stimuli in high external noise.

Thus, the experiments described in this section involved the measurement of

changes in contrast-dependent internal noise using the double-pass response consistency

technique described in Chapter 1.  As in the previous experiments, this technique is

applied to the identification of both faces (Experiment 3.3) and textures (Experiment 3.4)

as perceptual learning takes place.  Again, the reader is referred to the theoretical

framework described in Chapter 1 and the methods described in Chapter 2 for more

details.  Only the aspects of the methodology specific to the current set of experiments

are presented here.

Methods

Stimuli.  The stimuli used were the same sets of 10 faces and 10 textures used in

the previous experiments.  In each task, signal energy identification thresholds were

measured in the highest levels of external noise power spectral density used in the

previous experiments (faces: 25.55 x 10-6 deg2; textures: 51.10 x 10-6 deg2).  N/2 unique

noise fields were generated for each experimental session, where N is the number of trials

within a given session.  The sequence of signal identities, signal energy levels, and seeds

used to generate the noise fields during the first half of the experiment were saved before
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every trial to allow for the exact reproduction of the same sequence of stimuli during the

second half of the experiment.

Procedure.  Signal energy was varied across trials during the first half of each

session according to two interleaved UDTR staircases (see Chapter 2).  Together, these

two staircases offered a wide sample of the observer's psychometric function.  This first

half of the session consisted of 200 trials per staircase (400 trials total).  The second half

of the session consisted of an exact replication of the first half of the session  (i.e., an

exact pixel-by-pixel reproduction of the sequence of trials shown during the first half of

the session was shown again during the second half of the session).  Thus, each session

consisted of a total of 800 trials.  Each session was completed without breaks and lasted

about one hour.  Only one session was completed each day.  Each observer completed six

sessions within ten days.  All of the observers were unaware that the first and second

halves of each session were identical.

Observers.  Two observers participated in the face identification task and two in

the texture identification task.  All of the observers were naive to the purposes of the

experiment.

Experiment 3.3:  Face Identification

Signal energy thresholds in the face identification task are plotted as a function of

session for both observers in Figure 3.11.  This figure shows a clear improvement across
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sessions for both observers: one observer (LCK) exhibited an improvement across

sessions similar to those found in Experiment 3.1 (about a factor of 2.8); the second

observer (JSW) exhibited a markedly higher degree of improvement across sessions

(about a factor of 8.2).  However, note that this second observer's initial threshold was

much higher than the other observers' initial thresholds (both from this experiment and

Figure 3.11  Signal energy thresholds in high external noise plotted as a function of session for the two
observers in the 1-of-10 face identification task.  The external noise power spectral density was set to the

highest level used in Experiment 3.1 (25.55 x 10-6 deg2).  Error bars on each symbol correspond to ± 1

standard deviation.
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Experiment 3.1).  Regardless of individual differences, these results demonstrate a clear

learning effect for both observers.

Figure 3.12 shows the results of the corresponding consistency analysis for each

observer.  Each panel plots percent correct as a function of percent agreement for one of

the observers.  Each symbol corresponds to a single stimulus level within a given session.

Recall that an adaptive staircase varied the contrast during the first half of the session, so

not all of the data points received the same number of trials.  Instead, the data points

surrounding 50% and 79% correct received the most trials (due to the nature of the

staircase rules chosen)16.  In both panels, the closed symbols correspond to the first three

sessions, the open symbols the last three sessions.  If a decrease in contrast-dependent

internal noise was responsible for some or all of the decrease in thresholds with learning,

percent agreement should increase across sessions.  That is, if contrast-dependent internal

noise decreased with learning, we would expect to see a rightward shift in the data across

sessions.  However, there appear to be no systematic changes in percent agreement across

sessions.  Instead, for each observer the data from all of the sessions appear to fall around

a single line.  In each panel, the solid line corresponds to the predictions of an observer

                                                  
16 Percent correct is based on the percentage of correct responses from the entire session.  Percent
agreement is computed by comparing the responses on corresponding trials in the two passes through the

stimulus set and calculating the percentage of trials where the responses were the same (regardless of
accuracy).  Notice that percent correct and percent agreement are highly correlated: this is because percent

agreement will naturally increase with increasing percent correct.
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Figure 3.12  Response consistency plots for the two observers in the 1-of-10 face identification task across
six sessions.  Each panel plots percent correct as a function of percent agreement for each stimulus level

tested.  The filled symbols correspond to the first three sessions, the open symbols the last three sessions
(see legend).  Error bars on each symbol correspond to ± 1 standard deviation.  The large variation in error

bar magnitude is due to the unequal number of trials at each data point (a result of the use of a staircase
procedure).  Solid lines in each plot correspond to the performance of a simulated observer with an

internal/external noise ratio approximately equal to the average of the estimated internal/external noise

ratios across sessions (see Figure 3.13).
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with an internal/external noise ratio of 2.0.

This trend is shown quantitatively in Figure 3.13, where the internal/external

noise ratios for each observer are plotted as function of practice.  The data for each

observer from each session were fit to Equation 2.9, and Equation 2.10 was used to

compute estimates of the internal/external noise ratios.  Although there is a large degree

of variability across sessions, there is no systematic decrease in the estimated

Figure 3.13  Internal/external noise ratio estimates for the two observers in the 1-of-10 face identification

task across six sessions.  Error bars on each symbol correspond to ± 1 standard deviation.
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internal/external noise ratio with practice, implying contrast-dependent internal noise did

not decrease significantly with learning.  In addition, the average internal/external noise

ratio for each observer is between 2.0 and 3.0, a range significantly higher than the

estimates of 0.8-1.0 reported in previous experiments (Burgess & Colborne, 1988; Green,

1964).  The presence of such a large contrast-dependent internal noise indicates the

previous estimates of the efficiency of internal calculations were significantly

underestimated by the analysis in Experiment 3.1 17.

Experiment 3.4: Texture Identification

The results of Experiment 3.4 are shown in Figures 3.14-3.16.  Figure 3.14 shows

signal energy thresholds for both observers, as a function of session.  As found the in

previous experiments, the performance of both observers improved with practice.

However, the magnitude of improvement greatly exceeded that found in the previous

                                                  
17 The internal/external noise ratio can be used to factor out the contribution of proportional internal noise

to the previous estimates of calculation efficiency.  Recall that the internal/external noise ratio is expressed
in terms of noise standard deviation, and that the human and ideal noise-masking functions are linear when

expressed in terms of signal energy and noise power spectral density.  Noise power spectral density is
proportional to the variance of the noise(squared standard deviation).  Thus, the observer's calculation

efficiency in the absence of proportional internal noise may be estimated by adding the uncorrected
calculation efficiency to the product of the squared internal/external noise ratio and the uncorrected

calculation efficiency.  If we estimate the internal/external noise standard deviation ratio to be 2 in the face

identification experiment, this would yield an internal/external noise variance ratio of about 4.  This value
would increase the calculation efficiency estimates from Experiment 3.1 from about 2% to about 10%.  In

the texture identification experiment reported below, the average estimated internal/external noise standard
deviation ratio was about 1.3, yielding an internal/external noise variance ratio of about 1.7.  This value

would increase the calculation efficiency estimates from Experiment 3.2 from about 2% to about 5.5%.
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texture identification experiment: observer LAP improved by a factor of 14 and observer

SKH by a factor of 12.5  Unless this discrepancy is simply due to individual differences,

it must be a result of using an adaptive threshold estimation procedure and/or restricting

the power of the external noise to a single level.  Regardless, both observers showed a

clear effect of learning in the task.

Figure 3.14  Signal energy thresholds in high external noise plotted as a function of session for the two
observers in the 1-of-10 texture identification task.  The external noise power spectral density was set to

the highest level used in Experiment 3.2 (51.10 x 10-6 deg2).  Plotting conventions are the same as in

Figure 3.11.
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Figure 3.15  Response consistency plots for the two observers in the 1-of-10 texture identification task
across six sessions. Plotting conventions are the same as in Figure 3.12.
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Figure 3.15 shows the results of the corresponding consistency analysis for each

observer.  The plotting conventions are the same as in Figure 3.12.  As in the face

identification task, for each observer the data from all of the sessions fall around a single

line.  In each panel, the solid line corresponds to the predictions of an observer with a

particular internal/external noise ratio (LAP: 1.3; SKH: 1.4).  This trend is reflected in

Figure 3.16, which shows the corresponding internal/external noise ratio estimates for

Figure 3.16  Internal/external noise ratio estimates for the two observers in the 1-of-10 texture
identification task across six sessions.  Plotting conventions are the same as in Figure 3.13.
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each observer across sessions.  As in the face identification experiment, these data show

no systematic changes in the internal/external noise ratio estimates across sessions,

indicating contrast-dependent noise did not contribute to the reduction in thresholds with

practice.  However, unlike the face identification experiment, the average

internal/external noise ratio for each observer falls between around 1.3, a value only

marginally higher than the estimates of 0.8-1.0 reported in previous experiments.

Discussion

The results from the response consistency analyses of Experiments 3.3 and 3.4

show that contrast-dependent internal noise does not decrease significantly with learning

in both the face and texture recognition tasks.  These results, combined with the noise

masking results from Experiments 3.1 and 3.2, are consistent with the idea that the only

significant change that occurs with perceptual learning is an increase in the efficiency of

internal calculations.  In addition, the fact that the effects of learning were the same for

faces and abstract textures strongly suggests that this effect is a general property of

perceptual learning in pattern identification tasks.  However, as alluded to in the

introduction, one of the implicit assumptions of the model outlined in Chapter 1 is that all

of the internal noise is introduced before the calculations have taken place (see Figure

1.4).  In contrast, Dosher and Lu's Perceptual Template Model (Dosher & Lu, 1998;

Dosher & Lu, 1999, 2000; Lu & Dosher, 1998, 1999; Lu et al., 2000) assumes all of the
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internal noise is introduced after the calculations have taken place (Figure 3.17).  Such a

'late noise' model makes very different predictions about how an observer's noise

masking function will be affected by changes in the efficiency of internal calculations.

This can be seen by considering Equation 1.1 with a contrast-invariant noise whose effect

on performance is independent of the calculation:

E = kNe + Ni                                                                                                                   (3.1)

This may be expanded to include a contrast-dependent internal noise that is some

proportion m of the sum of E, Ne, and Ni:

Figure 3.17  'Late' noise version of the black-box model illustrated in Figure 1.4.  Unlike the model
described in Figure 1.4, the internal noise is introduced after the internal calculations have taken place.
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          E = kNe + Ni + m(E + kNe + Ni)

             = (kNe + Ni)((1 + m)/(1 - m))

         E = k'(kNe + Ni)

log(E) = log(k') + log(kNe + Ni)                                                                                    (3.2)

where k' is equal to (1+m)/(1-m).  Comparison of Equations 1.3 (Chapter 1) and 3.2

reveals both early and late noise models make the same predictions about the effects of

changes in both contrast-invariant and contrast-dependent internal noise.  However,

notice that the efficiency parameter k  is not incorporated within the constant k'.  Instead,

it only affects the internal representation of the magnitude of the external noise.

Accordingly, reducing k  only affects thresholds at high external noise levels.  This

property is illustrated in Figure 3.18, which demonstrates the effects of changes in

internal noise and calculation efficiency on the noise masking function of an observer

with only late internal noise.

How does a late noise model account for our results?  Experiments 3.1-3.2

showed a change in the noise masking function that is consistent with a change in

proportional noise in a late noise model.  However, Experiments 3.3-3.4 showed that

contrast-dependent internal noise does not change with learning.  Thus, in the absence of

a change in contrast-dependent internal noise, the only way a late noise model is able
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account for our results is by positing identical, concurrent reductions in both contrast-

invariant internal noise and calculation efficiency as learning takes place.  This prediction

of the late noise model can be tested by measuring response consistency in a low level of

external noise.  Under low noise conditions, the dominant internal noise will be the

Figure 3.18  Hypothetical noise-masking functions for an observer with 'late' internal noise.  Log of signal
energy threshold (E) is plotted as a function of external noise power spectral density (Ne).  The solid line

depicts the possible performance of an observer that performs contrast-invariant calculations and has both
contrast-invariant and contrast-dependent internal noise.  The medium dashed line depicts the changes in

the noise-masking function predicted by an increase in the efficiency of internal calculations.  The finely
dashed line depicts the changes in the noise-masking function predicted by decrease in contrast-invariant

internal noise.  The coarsely dashed line depicts the changes in the noise-masking function predicted by a

decrease in contrast-dependent internal noise that is proportional to stimulus magnitude.
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contrast-invariant component.  Thus, a late noise model predicts that the observer's

internal/external noise ratio should decline as learning takes place in low external noise.

Four observers performed the same face and texture identification tasks as in

Experiment 3.3 and 3.4, with the exception that the external noise power spectral density

was set to the lowest values used in Experiments 3.1 and 3.2 (faces:0.04 x 10-6 deg2;

textures: 0.20 x 10-6 deg2).  In addition, a set of 10 new textures were generated, allowing

the two observers from Experiment 3.4 to participate in the low external noise condition

(to allow for comparison of results across external noise conditions).  Two new observers

were recruited for the face identification task.  All observers participated in six sessions

within eight days, with the exception of one observer (RRB) who was unable to complete

the final session due to illness.

The results are shown in Figures 3.19-3.21.  Figure 3.19 shows thresholds for

each observer in the face (top panel) and texture (bottom panel) identification tasks, as a

function of session.  Figure 3.20 shows the corresponding consistency plots and Figure

3.21 shows the estimated internal/external noise ratios for each observer.  As in the

previous experiments, thresholds declined significantly with practice in both tasks, but

none of the observers showed a corresponding increase in consistency.  These results

validate our previous conclusion (based on the measures of equivalent input noise from

Experiments 3.1 and 3.2) that internal contrast-invariant noise is not affected by learning,

and are inconsistent with the predictions of a late noise model.  However, we also found
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Figure 3.19  Signal energy thresholds in low external noise plotted as a function of session for observers in
the 1-of-10 face (top panel) and texture (lower panel) identification tasks.  The external noise power

spectral density was set to the lowest level used in either Experiment 3.1 or 3.2 (faces:0.04 x 10-6 deg2;
textures: 0.20 x 10-6 deg2).  Plotting conventions in each panel are the same as in Figure 3.11.
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Figure 3.20  Response consistency plots for the observers in the 1-of-10 face (top two panels) and texture

(bottom two panels) identification tasks in low external noise across sessions.  Plotting conventions for
each panel are the same as in Figure 3.12.
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Figure 3.21  Internal/external noise estimates for the observers in the 1-of-10 face (top panel) and texture

(bottom panel) identification tasks in low external noise across sessions.  Plotting conventions are the same
as in Figure 3.13.
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in Experiments 3.1 and 3.2 that equivalent noise differed for faces and textures, a result

that is consistent with the existence of a late internal noise.  One possible explanation for

this apparent discrepancy is that observers may have made use of the outputs of very

different early mechanisms in the face and texture identification tasks (perhaps due to

their extremely different bandwidths) and that these early mechanisms differ greatly in

their stochastic properties.

Conclusions

The results of the experiments in this chapter offer compelling evidence that it is

only the efficiency of internal calculations that changes with perceptual learning in visual

pattern recognition tasks.  In all of the experiments reported thus far, identification

thresholds have been used to make inferences about the changes that take place with

perceptual mechanisms as learning occurs.  However, one shortcoming of the noise

masking and response consistency techniques is that they do not allow us to specify the

particular kinds of changes that occur within an observer's internal representations as

learning takes place.  The fact that calculation efficiency improves with learning implies

that internal representations (i.e., templates) become more ideal with practice.  This

prediction of the model is the topic of Chapter 4, where the response classification

technique described in Chapters 1 and 2 is used to measure observers' calculations as

perceptual learning takes place.
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4          Changes in Observer Calculations with Learning
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Introduction

The purpose of this chapter is to extend the results of the previous set of

experiments to include a more detailed description of the changes that take place with

perceptual learning.  The experiments in Chapter 3 showed that it is only the efficiency of

internal calculations that change as learning occurs.  However, the exact nature of those

changes remains unspecified.  That is, what is it about the calculations that changes with

practice, exactly?  This chapter will attempt to address this question by using a technique

called response classification.  Recall from Chapter 1 that the response classification

technique involves randomly perturbing a signal to recover the aspects of the stimulus

used by an observer in a task.  This is achieved by correlating the random perturbations

with the observer's responses across trials.  In a visual pattern recognition task, this

amounts to adding noise to a signal and correlating the contrast of the noise at each

stimulus location with the observer's responses across trials.  The end result is a

correlation map called a classification image  that shows the relative influence of each

pixel on the observer's responses (see Chapter 1 for a more detailed description of

response classification and Chapter 2 for details about how classification images are

computed).  For a linear observer, the classification image will be proportional to an

observer's calculation (Abbey, Eckstein, & Bochud, 1999).  In the context of perceptual

learning, the response classification technique can be used to trace the changes in an

observer's calculations as learning takes place.  In addition, human and ideal
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classification images can be compared to test the prediction that an observer's

calculations become more efficient (and thus more ideal) as learning occurs.

Thus, the experiments in this chapter involve the application of the response

classification technique to the identification of novel faces (Experiment 4.1) and textures

(Experiment 4.2).  As mentioned in Chapter 1, the stimulus sets were reduced to only two

signals per set for in order to expedite the data collection and simplify the analyses.  As in

Chapter 3, the experiments rely heavily on the theory described in Chapter 1 and the

methods described in Chapter 2.  Only the aspects of the methodology specific to the

present experiments are described here.

Methods

Stimuli.  The stimuli used were the sets of two faces and two textures shown in

Figure 2.1 and 2.2.  In each task, signal energy was manipulated across trials according to

a single UDTR staircase to maintain 71% correct performance throughout the session.

The staircase was reset to its initial state at the beginning of each session.  The signals

were embedded in the highest level of external noise power spectral density used in the

previous experiments (faces: 25.55 x 10-6 deg2; textures: 51.10 x 10-6 deg2).  A unique

noise field was generated before each trial.  The sequence of signal identities, observer

responses and seeds used to generate the noise fields were saved after every trial to allow

for subsequent computation of the classification images (see Chapter 2 for details).
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Procedure.  Each session consisted of 800 trials that were completed without

breaks over the course of about one hour.  Only one session was completed each day.

Each observer participated in a total of 12 sessions over the course of 16 days.

Figure 4.1  Signal energy thresholds plotted as a function of session for the two observers in the face
identification task.  The external noise power spectral density was set to the highest level used in

Experiment 3.1 (25.55 x 10-6 deg2).  Error bars correspond to ± 1 standard error.
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Observers.  Two observers participated in the face identification task and two in

the texture identification task.  All of the observers were naive to the purposes of the

experiment.

Experiment 4.1:  Face Identification

Signal energy thresholds for the two observers in the face identification task are

plotted as a function of session in Figure 4.1.  Threshold was defined as the signal energy

level yielding 71% correct performance, and was estimated by a maximum-likelihood fit

of the staircase data to Equation 2.5.  Figure 4.1 shows a clear effect of learning, with

thresholds declining by about a factor of 3.0 for both observers over the course of the 12

sessions.  Similar to the previous experiments, the majority of learning for both observers

occurred within the first 4-6 sessions.

The corresponding classification images for each session are shown in Figure 4.2

for one observer (LCS).  Sessions 1-3 are shown in the top row (from left to right),

sessions 4-6 are shown in the second row; sessions 7-9 in the third row, and sessions 10-

12 in the bottom row.  Recall that the computation of the classification images involves

sorting and averaging the noise according to the stimulus-response combinations and

combining these averages to form a single classification image (see Equation 2.11).  The

contrast of a pixel in the classification image corresponds to the correlation between the

contrast of the noise at that pixel across trials and the observer's responses (in this case,
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the responses are 'face #1' or 'face #2').  In Figure 4.2, pixels that are brighter than mean

gray indicate a positive correlation between the noise contrast at that pixel and the

response 'face #2'.  Alternatively, pixels that are darker than mean gray indicate a

negative correlation between the noise contrast at that pixel and the response 'face #2'18.

Inspection of Figure 4.2 reveals no obvious features emerging from the

classification images.  Unfortunately, these images are far too noisy to produce visible

representations of the locations used by observers during each session.  One reason for

this noisy appearance is the relatively small number of trials used to compute each

classification image.  Typically, at least several thousand trials are needed to produce

highly visible image features in the raw classification images (Abbey et al., 1999; Beard

& Ahumada, 1998; Gold et al., 2000).  A second reason for the noisy appearance most

likely stems from visual masking by spatial frequencies outside of the range of

frequencies used by the observer to perform the task (De Valois & De Valois, 1990).

One way to address this issue is to filter the classification images according to the regions

of the frequency spectrum that are thought to contribute to the observer's decisions.  As

mentioned in Chapter 2, previous results suggest observers make use of frequencies

within a 2-octave wide band centered around 6 c/image for face identification.  Figure 4.3

                                                  
18 The choice to correlate responses with 'face #2' is arbitrary.  It results from choosing the second face in

the set to correspond to S2 and R2 in Equation 2.11.
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Figure 4.2  Raw classification images for observer LCS in the face identification task.  Each panel
corresponds to a single session.  The top row corresponds to sessions 1-3 (from left to right), the second

row to sessions 4-6, the third row to sessions 7-9, and the bottom row to sessions 10-12.
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Figure 4.3  Smoothed classification images for observer LCS in the face identification task.  Each panel
corresponds to a single session.  The top row corresponds to sessions 1-3 (from left to right), the second

row to sessions 4-6, the third row to sessions 7-9, and the bottom row to sessions 10-12.
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shows the raw classification images from Figure 4.2 filtered with a log-Gaussian spatial

frequency filter centered at 6 c/image with a bandwidth of 2 octaves (± 1 octave at half-

height).  Unfortunately, there still appear to be no discernible features within the

classification images, presumably due to the small number of trials within each session.

Although it is not possible to visualize features in these data, statistical analyses

can be used to test for global changes in the classification images.  Specifically, the

results from Chapter 3 imply that the observer's calculations become more efficient with

learning.  A strong prediction of these results is that the observer's classification images

should become more similar to the ideal observer's classification image as learning takes

Figure 4.4  The ideal observer's classification image (template) in the face identification task (see

Appendix for details).
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place19.  It is shown in the Appendix that the ideal classification image or 'template' in a

1-of-2 identification task is the difference between the two possible signals (Equations

2.12 and A.5).  The ideal template for the 1-of-2 face identification task is shown in

Figure 4.4.  The ideal template reveals that most of the information for this task and pair

of signals is located around the eyes and eyebrows -- the places where the two faces

differ the most.  Figure 4.5 plots the normalized cross-correlation with the ideal template

for the two observers in the 1-of-2 face identification task, as a function of session20.

Each symbol corresponds to the correlation with the ideal template for one of the

observers within a given session.  If learning improves calculation efficiency, we would

expect a significant increase in the correlation between the human and ideal templates

across sessions.  Although the data are noisy, there appears to be a gradual increase in

correlation with practice.  This trend was tested by computing least-squares linear fits to

the data for each observer (the solid and dashed lines passing through the plots).  The

amount of variability in the data accounted for by a linear fit can be estimated by

computing r2, and the probability p that this value could have been obtained in the

                                                  
19 The ideal observer's classification image can be thought of as an 'information map', with the contrast at
each pixel corresponding to its relative informativeness.  This is a result of the fact that ideal observer is

only constrained by the physical availability of information.  If learning improves the efficiency of an

observer's calculations, it follows that the calculations are becoming more similar to those used by the ideal
observer.  This should result in an increase in the similarity between the human and ideal classification

images.
20  The normalized cross-correlation ranges between -1.0 and 1.0, and is computed according to Equation

2.13.
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absence of a real correlation can be estimated by using a t-test (McCall, 1986).  The r2,

and p values for both observers are reported in the lower right corner of Figure 4.5.

Despite the appearance of a gradual trend, these values show that there is not a significant

linear increase in correlation with the ideal template across sessions for both observers.

Figure 4.5  Normalized cross-correlations between the two observers' classification images and the ideal
observer's template in the face identification task, plotted as a function of session.  The lines passing

through the plot correspond to least-squares linear fits to the data for each observer.  The corresponding r2

and p values for each fit are shown in the lower right corner.
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The lack of a significant increase in correlation with the ideal template across

sessions is not entirely surprising, given the relatively small number of trials (800) used

to compute each classification image.  If we are to assume that an observer uses some

relatively small subset of pixels to perform the task, the noise falling on the vast majority

of pixels will have no influence upon the observer’s responses.  As a result, the pixels

used by the observer must be highly correlated with the ideal template in order to

overcome the degrading effects of the remaining noisy pixels.  One way this can be

achieved is by increasing the number of trials in the classification image.  Inspection of

Figure 4.1 shows the majority of learning occurs within the first six sessions.  This

suggests that we may be able to increase the signal-to-noise ratio by collapsing across

sessions within the first and second halves of the experiment.  Figures 4.6 and 4.7 show

the raw (top row) and smoothed (middle row) classification images for observers LCS

and SKH, respectively, pooled across either the first (sessions 1-6; left column) or last

(sessions 7-12; right column) half of the experiment.  In addition, the bottom row in each

figure shows the smoothed images after being submitted to a statistical test.  In these

images, all of the pixels that are not statistically significant (p<0.01) are set to mean gray.

The remaining pixels have been set to unity and multiplied by the corresponding pixels in

the ideal template.  Inspection of both of these figures shows two major differences

between the first and last halves of the experiment.  First, both observers appear to

concentrate more on the top left eyebrow region in the second half of the experiment.
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Sessions 1-6 Sessions 7-12
LCS

Figure 4.6  The raw (top row), smoothed (middle row) and statistical (bottom row) classification images
for observer LCS in the face identification task, pooled across either the first (sessions 1-6; left column) or

last (sessions 7-12; right column) half of the experiment.  In these statistical images, all of the pixels that
are not statistically significant (p<0.01) are set to mean gray.  The remaining pixels have been set to unity

and multiplied by the corresponding pixels in the ideal template.
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SKH
Sessions 1-6 Sessions 7-12

Figure 4.7  The raw (top row), smoothed (middle row) and statistical (bottom row) classification images
for observer SKH in the face identification task, pooled across either the first (sessions 1-6; left column) or

last (sessions 7-12; right column) half of the experiment.
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Figure 4.8  The percentage of classification image pixels that reached statistical significance in the first
and last halves of the face identification experiment.

Figure 4.9  Normalized cross-correlations between the two observers' classification images and the ideal
observer's template in the first and last halves of the face identification experiment.



110

Second, the size of the region appears to become larger in the second half of the

experiment.  This change in region size is reflected in Figure 4.8, which shows the

percentage of image pixels that reached statistical significance in the two halves of the

experiment.  These data show that both observers did in fact use more pixels in the

second half of the experiment21.  Figure 4.9 shows that both of these changes dramatically

improved the correlation with the ideal observer's template.  This figure plots the

normalized cross-correlation between the human classification images and the ideal

template for the first and last halves of the experiment.  The statistical significance of the

correlation is shown above each bar in the histogram.  These data show that the

correlation was not statistically significant for both observers in the first half of the

experiment (p>0.05), but was highly significant for both observers in the second half of

the experiment (p<0.001).

Experiment 4.2:  Texture Identification

Signal energy thresholds for the two observers in the texture identification task

are plotted as a function of session in Figure 4.10.  Thresholds were calculated in the

same fashion as Experiment 4.1.  As in all of the previous experiments, there was a large

                                                  
21 However, the use of more pixels does not necessarily insure that the calculation will be more efficient.
For example, an observer could use twice as many pixels in the second half of the experiment, but if none

of the pixels were informative, the calculation would clearly be less efficient.
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effect of learning: thresholds declining by about a factor of 5.0 for both observers over

the course of the 12 sessions, with the majority of learning for both observers occurring

within the first six sessions.

The corresponding classification images for each session are shown in Figure 4.11

for one observer (LCS).  Plotting conventions are the same as in Figure 4.2, with the

Figure 4.10  Signal energy thresholds plotted as a function of session for the two observers in the texture
identification task.  The external noise power spectral density was set to the highest level used in

Experiment 3.1 (51.10 x 10-6 deg2).  Error bars correspond to ± 1 standard error.
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w

Figure 4.11  Raw classification images for observer LCS in the texture identification task.  Each panel
corresponds to a single session.  The top row corresponds to sessions 1-3 (from left to right), the second

row to sessions 4-6, the third row to sessions 7-9, and the bottom row to sessions 10-12.
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Figure 4.12  Smoothed classification images for observer LCS in the texture identification task.  Each
panel corresponds to a single session.  The top row corresponds to sessions 1-3 (from left to right), the

second row to sessions 4-6, the third row to sessions 7-9, and the bottom row to sessions 10-12.
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Figure 4.13  Statistical classification images for observer LCS in the texture identification task.  Each
panel corresponds to a single session.  The top row corresponds to sessions 1-3 (from left to right), the

second row to sessions 4-6, the third row to sessions 7-9, and the bottom row to sessions 10-12.
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exception that pixels that are brighter than mean gray indicate a positive correlation

between the noise contrast at that pixel and the response 'texture #2' and pixels that are

darker than mean gray indicate a negative correlation between the noise contrast at that

pixel and the response 'texture #2'.  As with the face identification task, there are no

obvious features that emerge from the raw classification images.  However, unlike the

face stimuli, the textures are highly localized in the frequency domain22.  This property

suggests that a filter matched to the bandwidth of the signals (2-4 c/image) could be

highly successful at removing noise from the classification images.  Figure 4.12 shows

                                                  
22 The textures are designed to have energy only within a narrow band of frequencies (2-4 c/image),

whereas energy is inversely related to frequency in the faces.

Figure 4.14  The ideal observer's classification image (template) in the texture identification task (see
Appendix for details).
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the raw classification images from Figure 4.11, smoothed with the same filter used to

create the texture patterns.  Figure 4.13 shows the corresponding statistical classification

images, computed as described in Experiment 4.1.  Unlike the filtered face classification

images, it is possible to see changes occurring in the classification images across

sessions.  Specifically, this observer appears to be making greater use of a region in the

Figure 4.10  Signal energy thresholds plotted as a function of session for the two observers in the texture
identification task.  The external noise power spectral density was set to the highest level used in

Experiment 3.1 (51.10 x 10-6 deg2).  Error bars correspond to ± 1 standard error.
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AJR
Sessions 1-6 Sessions 7-12

Figure 4.16  The raw (top row), smoothed (middle row) and statistical (bottom row) classification images
for observer AJR in the texture identification task, pooled across either the first (sessions 1-6; left column)

or last (sessions 7-12; right column) half of the experiment.
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LCS
Sessions 1-6 Sessions 7-12

Figure 4.17  The raw (top row), smoothed (middle row) and statistical (bottom row) classification images
for observer LCS in the texture identification task, pooled across either the first (sessions 1-6; left column)

or last (sessions 7-12; right column) half of the experiment.
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Figure 4.19  Normalized cross-correlations between the two observers' classification images and the ideal
observer's template in the first and last halves of the texture identification experiment.

Figure 4.18  The percentage of classification image pixels that reached statistical significance in the first
and last halves of the texture identification experiment.
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upper left corner as learning takes place.  Comparison with the ideal observer's template

(Figure 4.14) shows this region to be highly informative, suggesting calculation

efficiency is improving with practice.  This observation is borne out in Figure 4.15,

which shows the normalized cross-correlation between the human classification images

and the ideal template, as a function of session.  r2 values and p values for the linear fits

are reported in the lower right corner of the figure.  These data show a highly significant

increase in the correlation with the ideal template with practice.

An even more robust effect of learning can be seen when the data are collapsed as

in Experiment 4.1 across the first and last halves of the experiment.  Figures 4.16 and

4.17 show the raw (top row), smoothed (middle row) and statistical (bottom row)

classification images for observers AJR and LCS, respectively, pooled across either the

first (sessions 1-6; left column) or last (sessions 7-12; right column) half of the

experiment.  Here, features can even be seen in the raw classification images, especially

for observer LCS (see the top right corner of the images).  However, the smoothed and

statistical images are more effective in revealing the large changes that take place with

learning.  Specifically, observer AJR uses a localized region in the center of the images in

throughout the first half of the experiment, and then greatly expands this region in the

second half of the experiment to connect two disparate localized regions.  Comparison

with the ideal template (Figure 4.14) shows that both of these locations are highly

informative.  In contrast, observer LCS uses a localized region in the top left corner
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throughout the experiment.  However, this region expands in the second half of the

experiment to include informative regions directly adjacent to it.  Despite the fact that the

two observers used very different strategies, each would predict a large increase in both

the number of pixels used and the cross-correlation with the ideal template in the second

half of the experiment.  Figure 4.18 shows that the proportion of pixels that reached

statistical significance is in fact far greater for both observers in the second half of the

experiment, and Figure 4.19 shows that the normalized cross-correlation between the

classification images and the ideal template is also significantly greater for both observers

in the second half of the experiment.

Discussion

The above data has offered a direct view of the changes that take place in two

observers' strategies as they learned to identify sets of unfamiliar faces and textures.

Visual inspection of the classification images shows clear changes in both the locations

and the sizes of the regions that they use to identify the patterns.  Statistical analyses

coincide with this impression, showing that learning both increases the similarity between

the observers' classification images and the ideal template and increases the number of

pixels observers use to perform the tasks.  Both of these results are consistent with the

experiments in Chapter 3 that showed observers' calculations become more efficient as

learning takes place.
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Although the experiments in Chapter 3 ruled out the possibility that internal noise

decreases with learning in a 1-of-10 identification task, it is possible that the effects of

learning in a 1-of-2 identification task are different.  The importance of this possibility is

made more apparent by noting that the changes in the classification images observed in

Experiments 4.1 and 4.2 are also consistent with the effects of a decrease in internal

contrast-dependent noise.  This is because a reduction in contrast-dependent internal

noise would increase the signal-to-noise ratio in the classification image, causing it to

converge more quickly and thus increase the correlation with the ideal template and the

number of significant pixels.

This possibility was tested by measuring calculation efficiency and internal noise

(both contrast-invariant and contrast-dependent) for the 1-of-2 identification tasks used in

Experiments 4.1 and 4.2.  The experiments in Chapter 3 and nearly all previous studies

have found a linear relationship between signal energy threshold and external noise

power spectral density (Pelli & Farell, 1999), so two-point noise-masking functions were

used to estimate calculation efficiency and equivalent input noise23.  Signal energy

thresholds were measured in the highest and lowest external noise levels used in the 1-of-

10 identification tasks.  In addition, the first and last halves of each session were identical

                                                  
23 A two-point noise masking function assumes the noise masking function is linear because the

relationship between any two points is perfectly characterized by a single straight line.
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Figure 4.20  Calculation efficiency (left column) and equivalent input noise (right column) as a function of

experimental session for the 1-of-2 face (top row) and texture (bottom row) identification tasks.  Error bars

on each symbol correspond to ± 1 standard deviation.
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Figure 4.21  Internal/external noise ratio estimates in low (closed symbols) and high (open symbols)

external noise as a function of experimental session for the 1-of-2 face (top row) and texture (bottom row)

identification tasks.  Error bars on each symbol correspond to ± 1 standard deviation.
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to allow for the measurement of response consistency.  Each session consisted of 200

repeated trials per external noise level, for a total of 800 trials (200 trials x 2 external

noise levels x 2 passes).  Two interleaved staircases (converging on 71% correct and 84%

correct) were used to adjust the signal energy at each level of external noise.  Two

observers participated in the face discrimination task and two in the texture

discrimination task (all experimentally naive).  All other aspects of the experiment were

the same as described in the experiments in Chapter 3.

The results are shown in Figures 4.20 and 4.21.  Figure 4.20 shows the estimates

of calculation efficiency (left column) and equivalent input noise (right column) for both

the faces (top row) and textures (bottom row), as a function of session.  Similar to the

results with the 1-of-10 identification tasks, these data show learning served to increase

calculation efficiency for both faces and textures, but had little or no effect on equivalent

input noise24.  Figure 4.21 shows the corresponding internal/external noise estimates from

the response consistency analysis.  Each panel plots the internal/external noise estimates

for one observer in either the face (top row) or texture (bottom row) identification task.

In each panel, the closed symbols correspond to the internal/external noise estimates in

low external noise and the open symbols to high external noise.  Although the data are

noisy, there is no consistent change in the internal/external noise estimates across
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sessions, indicating that neither contrast-invariant nor contrast-dependent noise changed

significantly with practice.  Taken together, these results suggest that an increase in

calculation efficiency mediated the changes in observer classification images found in

Experiments 4.1 and 4.2, and that the qualitative effects of learning do not depend upon

set size.

Overall Conclusions

The experiments reported in this thesis were designed to explore the effects of

perceptual learning under a signal detection framework.  The experiments in Chapter 3

allowed us to discriminate between the effects of calculation efficiency and internal noise

as observers learned to identify unfamiliar patterns.  They showed that it is only

calculation efficiency that changes with learning in these pattern recognition tasks.  The

experiments in the present chapter were designed to explore further the changes that take

place in an observer’s calculations as perceptual learning occurs.  Classification images

were used to estimate the computations employed by observers as they learned to

recognize unfamiliar patterns.  These experiments served two major purposes.  First, they

tested a strong prediction of the results from Chapter 3 -- namely, that an observer's

                                                                                                                                                      
24 The one exception to this trend was observer SKH in the texture identification condition, who showed an

increase in equivalent noise in the last session.
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calculations should become more efficient with perceptual learning.  This prediction was

verified by showing observers’ classification images become more similar to the ideal

template as learning takes place.  Second, they extended the notion of an improvement in

calculation efficiency with learning by offering a direct view of the particular calculations

used by observers in the face and texture discrimination tasks, as well as how the

calculations changed as observers learned to recognize the stimuli.

Taken together, the results of the experiments in this thesis place important new

theoretical constraints upon models of perceptual learning.  Beyond these theoretical

implications, there may also be important practical applications for these techniques with

respect to various phenomena associated with perceptual learning, such as visual learning

disorders (e.g., dyslexia) or the development of visual expertise (e.g., surgery).
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Appendix:  Ideal Observer Analysis
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The proof for the ideal 1-of-m identification decision rule reported in Chapter 2 is

provided below, along with the derivation of the ideal template for a 1-of-2 identification

task.  Recall that the tasks we are interested in involves presenting one of m possible

signals embedded in static Gaussian white noise of some power spectral density.  A

signal is chosen randomly on each trial, and the observer must indicate which signal been

shown embedded in the noise during the trial.  Signal energy is systematically varied

across trials to obtain an identification threshold of some criterion percent correct.

The Ideal Decision Rule

Given the task and the statistics of the noise, the ideal decision rule can be derived

from first principles.  We shall assume that the ideal observer has access to the set of

possible stimuli that may appear in the noise.  In this sense, it can be thought of as a

stimulus-known-exactly observer (Green & Swets, 1966).  The stimuli can be thought of

as templates, which the ideal observer can use in the task.  The templates are defined as

Tj for j = 1 to m

where Tj is the jth template and m is the number of templates (signals).  The noise added

to the stimulus is Gaussian and white, with mean 0 and variance σ2.  Also,
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n = the number of pixels in each image

R = the signal+noise combination shown on a given trial.

We can use Bayes rule to derive the a posteriori probability that each template

appeared in the noise on a given trial (Duda & Hart, 1973).  Bayes rule is expressed as

P T R
P R T P T

P R
P R T P T( / )

( | ) ( )
( )

( | ) ( )= ∗ ≈ ∗                                                                 (A.1)

P(R) falls out of the equation because it is a constant that scales the likelihoods produced

but does not change their relative order.  For our identification task, we apply the rule to

each template, and choose the template that has the maximum likelihood of containing

the signal.  That is,

max { ( ) ( | )}..j m P T P R T= ∗1                                                                                             (A.2)

Because the order of the probabilities is what we are interested in, and the probability of

seeing each signal is the same, P(T) falls out.  Thus, we are left with maximizing P(R|T).

Because identification is maximized when the difference between the data and the
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templates is minimized (i.e., the template that is most similar to the data produces the

highest probability) and the noise is Gaussian, the quantity may be expressed as
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Taking advantage of the fact that we are only interested in relative order, the first term

falls out and we are left with:

min { }..

( )

j m

R T

e
i ij

i

n

=

− −∑
=

1

1

2 2
2

1 σ

However, exponentials increase monotonically, so the exponentiation can be removed as

well, leaving:
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If all of the templates have the same energy (which they do in the experiments reported in

this thesis), the rule may be simplified further.  Specifically, Ri
i

n
2

1=
∑  and Tij

i

n
2

1=
∑  are the

same for all of the images, so they fall out, leaving:

min { }..j m ij i
i

n
T R=

=
−∑1

1
2

The scalar constant can also be removed, and because maximization is equivalent to the

negative of minimization, the final rule can be expressed as:

max { }..j m ij i
i

n
T R=

=
∑1

1
                                                                                                          (A.4)

Thus, we have shown that the ideal decision rule for a 1-of-m identification task is to

choose the template that produces the highest cross correlation with the stimulus.

The Ideal Template for 1-of-2 Identification

A special case arises when there are only two templates (signals), T1 and T2.  First,

the decision rule may be expressed as a difference between two cross-correlations.

Second, the two-signal case allows us to derive a single template that the ideal observer
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can use to perform the identification task.  This template will represent the relative

informativeness at each pixel i in our task, and it is identical to the ideal observer's

classification image measured with an infinite number of trials according to the methods

described in Chapter 2.  Assuming the stimuli have equal probability of occurrence,

equation A.4 for the 1-of-2 identification task is

max{ , }T R T Ri i
i

n

i i
i

n

1
1

2
1= =

∑ ∑ .

Because there are only two quantities, the decision rule may be thought of as a function

of their difference:
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If P > 0 , choose T2; otherwise, choose T1.  These terms may be combined, and the ideal

template may be expressed as the difference between the two templates:
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P R T Ti i
i

n

i= ∑ −
=

( )2
1

1                                                                                                           (A.5)

Thus, we have shown that the quantity T2-T1 (i.e., the difference between the two possible

signals) can serve as a single template for the ideal observer to perform the identification

task.
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