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Abstract 

How are categories represented in human memory? Exemplar models assume that 

a category is represented by the individual instances experienced from that category. 

More generally, a category might be represented by multiple templates stored in memory. 

A new item is classified according to its similarity to these templates. Prototype models 

represent a category with a single summary abstraction (i.e., a single template), often the 

central tendency of the experienced items. A new item is classified according to its 

similarity to these category prototypes. Here, we show how correlating observers’ 

responses with external noise can be used not only to distinguish single from multiple 

template representations, but also to induce the form of these templates. The technique is 

applied to two tasks requiring categorization of simple visual patterns and demonstrates 

that observers used multiple traces to represent their categories, highlighting the potential 

of the procedure for use in more complex settings. 
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Main Text 

A central problem in cognitive psychology is the manner in which we represent 

perceptual categories in memory and the processes by which these representations are 

used to classify new perceptual inputs. For example, what memory representations and 

processes are used to classify a person we have not met before as a human, rather than as 

a toaster or a frog? Exemplar models assume that people represent categories by stored 

traces of the individual category instances that have been experienced (Medin & 

Schaffer, 1978; Nosofsky, 1986). A generalized form of this approach would represent a 

category by multiple templates, although not necessarily by a one-to-one mapping with 

specific instances. A new item is classified based on its combined similarity to the stored 

traces from a category in comparison to the similarity for each alternative category 

(Nosofsky, 1986). Prototype models assume that people form a single summary 

representation (or single template) for each category, often assumed to be the central 

tendency across all category instances. A new item is classified on the basis of its 

similarity to each category prototype (Minda & Smith, 2001, 2002). These model 

distinctions have arisen in category domains ranging from high-level concepts to low 

level perception, the latter domain often being modeled with Bayesian pattern recognition 

approaches (Duda & Hart, 1973; Graham, 1989; Knill & Richards, 1996).  

Such Bayesian template-matching models often incorporate the strong assumption 

that category decisions are based on the statistically optimal use of information (Green & 

Swets, 1966; Tjan et al., 1995). For example, consider the simple visual pattern 

categorization task depicted in Figure 1. The observer is shown a white square (the 

‘signal’) at one of four possible locations, randomly selected on each trial. Gaussian noise 
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is added to each pixel in each of the four locations, with each location divided into a 4x4 

grid of “pixels” (see Figure 1 for more stimulus details). The observer’s task is to indicate 

whether the white square signal appeared above or below fixation. Thus, in this very 

simple categorization task there are two categories (Top, Bottom), each with two 

members (Left, Right). The contrast of the white square signal is placed at a level where 

performance is at threshold (e.g., 71% correct). 

It turns out that the optimal strategy for this task is to represent each of the two 

categories by two templates and then classify test stimuli by their similarity to the 

templates using a decision rule that is remarkably similar to the decision rule utilized by 

several exemplar-based categorization models (Nosofsky, 1990). In particular, the ideal 

category templates are the four noise-free versions of the ‘white square plus three grey 

squares’ stimuli shown in Figure 1.  The relative likelihood of the Top and Bottom 

categories in the presence of a noisy test stimulus, S (signal and noise at all locations), is 

given by 
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where t and b range over the templates from the ‘Top’ and ‘Bottom’ categories, 

respectively, p ranges over the 8x8 grid of pixels that defines the set of potential stimulus 

locations, Sp is the pth pixel of stimulus S, Txp is the pth pixel from the template for 

category member x, and σ is the standard deviation of the externally added noise (Green 
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& Swets, 1966; Tjan et al., 1995). Category Top or Bottom is selected if the likelihood 

ratio is greater than or less than 1, respectively. We term this a multiple template model 

rather than an exemplar model, because a ‘pure’ exemplar model would represent a 

category (Top, say) by each and every signal-plus-noise presentation that was 

accompanied by feedback. Using a multiple template model as a stand-in for an exemplar 

model seems reasonable for tasks like the present one in which the storage of exact noise 

patterns is implausible given known limitations on human memory, and in which the 

target signals are known exactly. 

An alternative, sub-optimal model can be posited that is akin to a prototype 

representation. Each category is represented by a single template T, consisting of two 

light squares up and two grey squares down (for Top) or two light squares down and two 

grey squares up (for Bottom). The relative likelihood of the Top and Bottom categories 

given a test stimulus S is  
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where TT and TB are the single prototype templates for categories Top and Bottom, 

respectively. 

Because only Equation 1 involves a sum of exponentials, these single and 

multiple template models differ in the way they incorporate non-linearities. It is easy to 

see that a logarithmic transformation reduces Equation 2 to a simple ratio of distances 
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between the stimulus and each of the prototypes, but this simplification is not possible by 

taking a log of a sum as in Equation 1. This seemingly small distinction between the 

models is the key to the ability of the technique that we describe in this article to 

discriminate between single and multiple template category representations. We shall use 

an increasingly common approach for estimating the templates used by an observer, 

through formation of classification images (Ahumada, 2002; Ahumada & Lovell, 1971). 

This technique, known as reverse correlation (Ringach et al., 1997) or response 

classification (Beard & Ahumada, 1998), involves computing the correlation between the 

noise that is added to each pixel in the stimulus and the observer’s decisions across trials. 

It has been used to estimate observer templates in a wide variety of psychophysical tasks, 

ranging from simple detection of gratings (Ahumada & Beard, 1999) to face and object 

recognition (Gold et al., 2000; Sekuler et al., 2004). In this procedure, one sorts into 

separate bins the exact noise that had been added to the signal on each trial (only the 

noise is classified; the signal is discarded). In our extension of this procedure, there is one 

bin for each combination of signal presented and response given--the noise patterns 

within each bin are averaged.  In the case of the square categorization task described in 

Figure 1, there are four possible signals (Top-Left, Top-Right, Bottom-Left, and Bottom-

Right) and two possible responses (Top and Bottom), so the method produces eight 

average noise patterns called classification images. A classification image shows the 

relative weighting given to each pixel by the observer for a particular signal-response 

combination over the course of the experiment (Ahumada, 2002). 

We first used simulations to verify the intuition that single and multiple template 

models produce distinctly and measurably different patterns of results when the external 
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noise is analyzed in this fashion. For the Top-Bottom classification experiment described 

above, we used Equations 1 and 2 to classify 16,000 trials of signal plus noise. The 

templates used in the multiple template simulation were the ideal templates, that is, the 

four noise-free signals shown in Figure 1. The templates used in the single template 

model simulation were combined versions of the two signals within each category: The 

single ‘Top’ template was composed of two light top squares (with two grey bottom 

squares) and the single ‘Bottom’ template was composed of two light bottom squares 

(with grey top squares). 

The eight classification images that were produced by averaging the noise 

patterns in each signal-response bin are shown for the single template (prototype) model 

in Figure 2a and for the multiple template (exemplar) model in Figure 2b. To understand 

these plots, consider the four small squares in the top left bin of the upper panel of Figure 

2a. These squares show the correlation between the externally added noise and the 

prototype observer’s responses at each pixel in each square location for the trials where 

the stimulus was ‘Top Left’ and the observer responded ‘Top’. First, notice that the top 

two squares are lighter than the background, whereas the bottom two squares are darker 

than the background. Second, note that this pattern reversed when the observer responded 

‘Bottom’. Whereas lighter noise in the top regions and darker noise in the bottom regions 

made the observer more likely to respond ‘Top’, the opposite pattern led the observer to 

respond ‘Bottom’. The key finding, however, is that the placement of the signal in the left 

or right position did not alter the classification image, that is, the classification images for 

signal-left and signal-right are the same. This is not the case, however, for the multiple 

template model as shown in Figure 2b. Light squares up and dark down still lead the 



Visual Noise 8 

multiple template observer to say ‘Top’, and vice versa, but the classification images 

differ depending on whether the signal was actually presented on the left or right. 

Consider the case where the signal is ‘Top-Left’ (top left bins in Figures 2a and 

2b). For the prototype observer, the top square locations are weighted equally, and this 

pattern is the same when the signal is ‘Top- Right’.  However, the multiple template 

observer shows a greater influence of lightness in the top left location when the signal is 

present in the top left (row 1) and vice versa when the signal is present in the top right 

location (row 2). Notice that this kind of asymmetry is present in all of the other signal-

response bins for the multiple template observer; it is always the case that the location 

where the signal was actually present is weighted more than the adjacent location within 

the same category. This difference is made even more apparent in lower panels of Figures 

2a and 2b, which summarize the data for each observer by collapsing across all of the 

bins. These summaries were computed by flipping and/or contrast reversing each bin to 

make it consistent with the ‘signal = Top-Left / response = Top’ bin (e.g., the ‘signal = 

Top-Left / response = Bottom’ bin was contrast reversed, the ‘signal = Top-Right / 

response = Top’ bin was flipped about the vertical midline). The leftmost bin in each 

summary figure is the raw summary data computed by simply collapsing across bins as 

described above. The rightmost bin in each summary figure is a smoothed version of the 

raw summary figure, computed by replacing all of the values within each square region 

with the mean value across pixels. 

These simulations show that, in contrast to a prototype observer, a multiple 

template observer will give more weight to the location where the signal was present on a 

trial. This difference between models is caused by the exponential non-linearities in 
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Equations 1 and 2 that applies singly for the prototype model (Equation 2) and summed 

for the multiple template model (Equation 1). To aid intuition, consider that for the 

multiple template model an incorrect classification requires a great deal of opposite 

polarity noise to overcome the signal that is present, an effect that is magnified by the 

non-linearity in the models. The prototype model does not sum the exponentiated 

locations separately, so noise in either location has an equal effect. It is important to note 

that this difference between the models is independent of the specific choice of prototype 

and only depends on the use of a single template per response category. 

We next applied this same analysis to the classification data for four human 

observers in the same experiment. Each human observer participated in 4,000 trials. The 

results of this analysis for the data combined across all four observers are shown in 

Figure 2c (the individual observer patterns were similar to that shown in Figure 2c, but 

more noisy). These images were computed from the human data in the same fashion as in 

Figures 2a and 2b. The data clearly show that human observers exhibited the same 

differential pattern of stimulus location weighting as the multiple template model 

observer (Figure 2b), demonstrating that the pure prototype model is not adequate: An 

adequate model must include more than one template per category. We quantified this 

effect by computing the ratio of the leftmost to the rightmost top locations in each of the 

smoothed summary plots for the simulated and human observers. The results of this 

analysis are shown in Figure 3. As expected, the correlation ratio for the prototype 

observer was exactly 1, indicating the weighting of the two locations was the same for 

this observer. In contrast, the correlation ratios for the exemplar and human observers 

were much greater than 1 (~2.5), and were nearly identical. 
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Note that the true model used by observers might well be a complex mixture of 

multiple template representations and decision rules, rather than either of the pure models 

we have simulated here. Finding the true model used by our observers, or testing which 

ideal model better approximated the true model, was not the aim of this article. 

Nonetheless we carried out a number of comparison analyses to see which ideal model 

best predicted the trial-by-trial responses made by the human observers. In all cases, the 

multiple template model fared better than the single template model. The strongest test 

(and simplest to understand) involves looking at the most diagnostic trials among the 

4,000 experienced by each observer. These are trials on which the two models strongly 

predict opposite responses. Because the two models generally make highly correlated 

predictions, such trials are relatively rare, occurring on only 135 trials across the data for 

all four human observers. However, on these highly diagnostic trials, the human 

observers’ responses matched the predictions of the ‘ideal’ multiple template model on 

113 of the 135 trials. 

Thus, our results provide an important proof of concept: namely, that the response 

classification technique can be used to discriminate between single and multiple template 

models of categorization. To the extent that the multiple template model is a reasonable 

approximation to the exemplar model, this technique has potentially wide-ranging 

applications for distinguishing prototype and exemplar theories of perceptual 

categorization. 

The four-square task, however, is admittedly simple. To test the generalizability 

of our results we applied this technique to a task that requires classifications along 

dimensions that are more abstract than the spatial position of the stimuli. Figure 4a-c 
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illustrates a task in which observers must classify patterns based upon their spatial 

frequency (i.e., bar width) while the stimuli vary in both frequency and orientation. In 

this task, there are two categories: high frequency (5 cycles/deg; left column of Figure 

4a) and low frequency (2 cycles/deg; right column of Figure 4a). Within each category, 

one grating is oriented 45° left of vertical (bottom row of Figure 4a) and the other 45° 

right of vertical (top row of Figure 4a). As in the square categorization task, the stimulus 

is corrupted by white Gaussian pixel noise (e.g., the top of Figure 4c), and the observer’s 

task is to classify a stimulus as belonging to one of the two possible categories (High or 

Low frequency; see Figure 4 for more stimulus details). 

Figure 4b shows the stimuli described in Figure 4a represented in Fourier 

frequency space. As illustrated by the bottom of Figure 4c, spatial frequency in these 

plots is represented as the distance from the center of the image and orientation is 

represented as the angle made relative to the horizontal axis. The amount of relative 

power at each constituent frequency component is represented by the contrast at each 

location in each plot. For clarity, only frequencies below 8 cycles per image are shown in 

the figures. Figure 4b shows that the stimuli in Figure 4a can be equivalently represented 

as localized ‘bumps’ in Fourier space. In addition, because white Gaussian contrast noise 

in the spatial domain introduces white Gaussian amplitude noise in the spatial frequency 

domain, our response classification analyses can be equivalently carried out in Fourier 

space (Ahumada et al., 1975).  

Despite the differences in stimuli, the multiple template (exemplar) and single 

template (prototype) model decision rules are the same in both the grating and square 

discrimination tasks. Just as for the square categorization task, we would expect the 
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multiple template model to produce differential classification images conditional on the 

within category signal presented, that is there should be differences conditional on signal 

orientation. Figures 4d (spatial domain) and 4e (spatial frequency domain) show the 

results of this experiment. The top row gives the simulated results for the single template 

(prototype) model and the second row for the multiple template (exemplar) model, each 

based on 45,000 simulated trials. The bottom row gives the combined results for three 

human observers (each received 15,000 trials, the greater number of trials being 

necessary due to the greater number of pixels in the stimuli). As in the summary plots 

described at the bottom row of Figure 2, the symmetries across the various signal-

response bins allowed us to produce a single summary image for each spatial frequency 

response type (i.e., one image for ‘high frequency’ and one image for ‘low frequency’). 

This figure shows that the prototype model produces equal classification images 

dependent on stimuli with different orientations, whereas the multiple template model 

and human observers show large orientation dependent differences in the classification 

images. We quantified this effect by computing the ratio of the similarities (cross-

correlations) of the Fourier signal plots shown in Figure 4b within a given category 

(‘High’ or ‘Low’) to the corresponding Fourier classification plots in shown Figure 4e. 

The results of this analysis are shown in Figure 4f. As with the square categorization task, 

the performance of the exemplar model matches the performance of the human observers 

far more closely than the performance of the prototype model. Thus, we can conclude 

that any adequate model of human performance in this task must include multiple 

templates.  
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As with the square categorization task, we carried out a series of tests to 

determine which ideal model better predicted the trial-by-trial responses made by the 

human observers. Unlike the results for the square categorization task, the performance of 

the multiple template model was only slightly better than the single template model. 

Furthermore, it is clear from the data that the idealized multiple template model described 

above does not fully capture the pattern of human data.  In particular, as can be seen in 

Figure 4, the multiple-template model predicts a much wider range of frequency and 

orientation influence than is seen in the human data. These results raise an important 

cautionary note and highlight a benefit of the current technique: Although our data do not 

allow us to distinguish between the idealized single and multiple template models, the 

response classification technique can still be used to make inferences about the form of 

the templates used by observers as well as demonstrate that multiple templates must be a 

part of any adequate model. It is also worth noting that, although both of the examples we 

have presented here involve adding noise at the level of individual pixels, it is also 

possible to restrict the added noise to a stimulus sub-space (Ringach et al., 1997) and add 

noise along higher order stimulus dimensions, such as size, curvature and aspect ratio 

(e.g., Neri et al., 1999). Adding noise along these kinds of higher order dimensions could 

greatly reduce the size of stimulus perturbation space and may lend itself more naturally 

to more standard categorization tasks (e.g., Nosofsky, 1986) 

In sum, our results demonstrate that the response classification technique is an 

effective tool for making inferences about the number and form of templates used to 

make category judgments, for assessing the adequacy of single template (prototype) 

models, and equivalently, for demonstrating the existence of multiple templates within 
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each category. Our two experimental demonstrations were carried out with relatively 

simple tasks, but ones requiring quite different visual representations. However, it worth 

emphasizing that the experiments presented here were explicitly designed to be simple, 

easy to analyze and to provide a straightforward proof of concept. Although the results of 

our experiments happen to support an exemplar-type representation, they in no way offer 

a systematic and thorough comparison of prototype and exemplar models. In future 

research we hope to use this technique to explore the kinds of representations human 

observers use in more complex and realistic categorization tasks, especially ones in 

which there are many more items within each category and the templates of the 

alternative models are not obvious a priori. 
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Figure Legends 

 

Figure 1. Stimuli used in the square categorization task. The top four images show the 

noise-free versions of the square stimuli (signals) from each category (Top and Bottom). 

The bottom image shows an example of a noisy ‘Bottom-Right’ stimulus. Each square 

subtended 0.65° of visual angle from a viewing distance of 130 cm. The distance of the 

center of each square from the center of the display was 1.39°. Each square was coarsely 

divided into a 4 x 4 grid of pixels. The screen-pixels within each grid location were set to 

the same contrast value (with contrast of a pixel being defined as the difference between 

pixel and background luminance, normalized by background luminance). A 4x4 screen-

pixel fixation point remained at the center of the display for the duration of the 

experiment. On each trial, the stimulus was shown for approximately 500 ms. The 

background luminance was 81.4 cd/m2. The contrast variance of the Gaussian noise 

added to the square grids was 0.04. Accuracy feedback was provided in the form of a 

high or low beep. 

 

Figure 2. Response classification results for (a) a prototype model observer, (b) an 

exemplar model observer and (c) human observers in the square categorization task. Each 

block of four squares in the top row shows the resulting classification image for the 

corresponding signal-response combination. The bottom row of images summarizes the 

data for each observer by collapsing across all of the bins in the top image (left side) and 

smoothing the data (right side). 
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Figure 3. Ratios of the mean values obtained for the left and right top square locations in 

the smoothed classification images shown at the bottom of Figure 2. Error bars 

correspond to +/- 2 s.d. 

 

Figure 4.  (a) Signals used in the Gabor categorization task. (b) The same signals 

represented Fourier space (amplitude spectra only). Each plot shows frequencies <= 8 

cycles/image. (c) Example of a noisy, high frequency right-oriented Gabor stimulus in the 

spatial domain (top) and a description of how frequency f and orientation θ are 

represented in Figure 3b (bottom). The Gabor stimuli were 64 x 64 pixels in size, which 

subtended 1.05° of visual angle from a viewing distance of 130 cm. Fixation was 

maintained by a dark box that surrounded the stimulus region for the duration of the 

experiment. The spatial frequencies of the Gabors were 5 and 2 cycles/degree of visual 

angle, and the orientations were ± 45° to the left and right of vertical. The stimulus 

duration was approximately 500 ms, and the Gaussian noise added to each pixel had a 

contrast variance of 0.04. Accuracy feedback was provided in the form of a high or low 

beep. (d) Summary spatial classification images for both model observers and the human 

observers in each category (High and Low frequency). (e) Frequency-space summary 

classification images for both model observers and the human observers in each category. 

(f) Ratios of cross-correlation values obtained for each observer type in each condition 

(see text for details). Error bars correspond to +/- 2 s.d. 
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