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Abstract

To better understand how the visual system makes use of information across spatial scales when identifying different kinds of
complex patterns, we measured human and ideal contrast identification thresholds to estimate identification efficiency for 1- and
2-octave wide band-pass filtered letters and faces embedded in 2-D dynamic Gaussian noise. Varying stimulus center frequency
from 1 to 70 c/object had different effects on letter and face identification efficiency. In the 2-octave conditions, identification
efficiencies decreased by 0.25–0.5 log units for letters and 0.5–1.2 log units for faces as center frequency increased from 6.2 to
49.5 c/object, but only letters were identifiable at center frequencies below 6.2 c/object. In the 1-octave conditions, letter
identification efficiencies increased by about 0.5 log units as center frequency increased from 1.1 to 2.2 c/object, and were nearly
constant from 2.2 to 35 c/object. Letters were unidentifiable by human observers at 70 c/object. Surprisingly, face identification
was impossible for human observers at all center frequencies except 8.8 c/object for one observer, and 8.8 and 17.5 c/object for
a second observer. Ideal observer thresholds were obtained for both letters and faces in all conditions, so information was always
available to perform the task. Thus, the failure to identify faces reflects constraints on visual processing rather than a lack of
stimulus information. Selective spatial sampling may account for some of the differences between letter and face identification
efficiencies. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most models of visual processing assume that pat-
terns are encoded by multiple spatial frequency-tuned
channels, and these models generally provide a good
account of detection and discrimination data obtained
with simple visual patterns (De Valois & De Valois,
1988; Graham, 1989). However, it less clear how
higher-order mechanisms make use of such a represen-
tation when performing tasks with more complex, natu-
ralistic patterns. For example, some studies suggest that
the visual system may rely upon information carried by
a common band of frequencies for the identification of
different kinds of complex patterns (Solomon & Pelli,
1994; Braje, Tjan & Legge, 1995; Chung & Legge, 1997;
Majaj, Palomares, Mouchraud, Kotlyarenko & Pelli,
1998), but other findings imply that socially significant

or well-learned patterns, such as faces, may be pro-
cessed by specialized mechanisms (Yin, 1969, 1970;
Gross, Rocha-Miranda & Bender, 1972; Benton, 1980;
Hay & Young, 1982; Perrett, Rolls & Caan, 1982;
Desimone, Albright, Gross & Bruce, 1984; Baylis, Rolls
& Leonard, 1985; Damasio, 1985; Desimone & Schein,
1987; Perrett, Mistlin & Chitty, 1987; Perrett, Mistlin,
Chitty & Smith, 1988; Ellis & Young, 1989; Sergent,
1989; Damasio, Tranel & Damasio, 1990; Desimone,
1991; de Haan, Young & Newcombe, 1992; Heywood
& Cowey, 1992; Sergent, Ohta & MacDonald, 1992). In
this article, we have attempted to address the issue of
whether human observers make use of information
across spatial frequencies in the same way when identi-
fying different kinds of complex patterns. Our ap-
proach was to measure the ability of human observers
to use information contained within different bands of
spatial frequencies when identifying two very different
kinds of complex patterns: English letters and human
faces. By comparing human identification performance

* Corresponding author.
E-mail address: bennett@psych.utoronto.ca (P.J. Bennett)

0042-6989/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 4 2 -6989 (99 )00080 -2



J. Gold et al. / Vision Research 39 (1999) 3537–3560J. Gold et al. / Vision Research 39 (1999) 3537–35603538

to that of an ideal observer, we were able to separate
constraints imposed by the availability of stimulus in-
formation from constraints imposed by human visual
processing. Differences between face and letter identifi-
cation efficiencies would be consistent with the idea
that either: (i) lower-level visual processing imposes
different constraints upon the information available for
letter and face identification; or (ii) different mecha-
nisms that make differential use of information across
spatial scales subserve face and letter identification.
Alternatively, similar efficiencies for letters and faces
would be consistent with the proposal that the visual
system makes use of available information across spa-
tial scales in a general fashion when identifying com-
plex patterns.

1.1. Identification performance

Many studies have explored the role of spatial fre-
quency in the identification of patterns within a particu-
lar stimulus category, such as letters (Ginsburg, 1978;
Rubin & Siegel, 1984; Legge, Pelli, Rubin & Schleske,
1985; Parish & Sperling, 1991; Alexander, Xie & Der-
lacki, 1994; Solomon & Pelli, 1994; Chung & Legge,
1997), faces (Harmon, 1973; Harmon & Julesz, 1973;
Tieger & Ganz, 1979; Ginsburg, 1980; Riley & Costall,
1980; Fiorentini, Maffei & Sandini, 1983; Morrone,
Burr & Ross, 1983; Rubin & Siegel, 1984; Hayes,
Morrone & Burr, 1986; Bachmann, 1987; Schuchard &
Rubin, 1989; Bachmann, 1991; Costen, Parker & Craw,
1994; Peli, Lee, Trempe & Buzney, 1994; Costen,
Parker & Craw, 1996; Parker, Lishman & Hughes,
1996), objects and geometric forms (Ginsburg, 1984;
Norman & Ehrlich, 1987; Braje et al., 1995; Tjan,
Braje, Legge & Kersten, 1995; Parker et al., 1996;
Cannon et al., 1997), or natural scenes (Field, 1987;
Parker, Lishman & Hughes, 1992; Field, 1993; Schyns
& Olivia, 1994). The majority of these studies have
examined whether there are ‘critical identification
bands’: bands of frequencies that most effectively carry
information about the identity of the patterns for hu-
man observers. Often, critical identification bands are
defined as the range(s) of frequencies that yield optimal
identification performance—as measured by accuracy,
sensitivity, or response time—across differentially
filtered, quantized, or frequency-masked patterns. Table
1 summarizes the stimuli, methods, and results of many
experiments that have measured critical identification
bands for a variety of complex patterns in terms of
performance.

There is considerable consensus across studies that
the critical identification band for letters is between 1
and 2 octaves wide, and centered somewhere between 2
and 6 c/letter (Legge et al., 1985; Solomon & Pelli,
1994; Chung & Legge, 1997; Majaj et al., 1998). In
contrast, there is considerable disagreement regarding

the critical identification band for faces (Harmon, 1973;
Tieger & Ganz, 1979; Ginsburg, 1980; Fiorentini, Maf-
fei & Sandini, 1983; Rubin & Siegel, 1984; Hayes et al.,
1986; Bachmann, 1987; Schuchard & Rubin, 1989;
Bachmann, 1991; Costen et al., 1994, 1996; Majaj et al.,
1998; Schwartz, Bayer & Pelli, 1998). Estimates of the
center frequency of the critical identification band for
faces range from 1 c/face (Rubin & Siegel, 1984) to
beyond 25 c/face (Hayes et al., 1986). One explanation
for this disagreement is that the different tasks, meth-
ods, and conditions used in face identification studies
may have tapped into different aspects of performance.
Additionally, the comparison of performance levels
across conditions fails to take into account differences
in the amount of stimulus information available as a
function of spatial frequency and stimulus set (Parish &
Sperling, 1991; Solomon & Pelli, 1994; Braje et al.,
1995; Liu, Knill & Kersten, 1995; Tjan et al., 1995). For
example, suppose we high-pass filter two sets of faces,
measure identification accuracy for the filtered images,
and find that identification performance is near chance
for the first set but well above chance for the second
set. How are we to account for the difference in perfor-
mance? One explanation is that the filtering operation
affected stimulus information differently in the two sets.
For instance, high-pass filtering may have rendered all
of the faces in the first set physically identical (or very
similar), but left large differences among the faces in
the second set. In such a case, we would naturally
expect performance for the first set to be near chance
because there would be no information available to
perform the identification task. In fact, an ideal ma-
chine that used all of the available stimulus information
to do the same task would perform poorly on the first
set, too. The same ideal machine would perform better
on the second stimulus set, because there is more
information available for the task. This example illus-
trates that without some measure of available stimulus
information, it is unclear whether differences in perfor-
mance are due to variations in the ability to use infor-
mation or variations in the a6ailability of information
(or both).

1.2. Ideal obser6er analysis and efficiency

One solution to the problem caused by variations in
the amount of available information across conditions
is to compare human performance to that of an ideal
obser6er. An ideal observer is a theoretical device whose
performance is constrained only by the availability of
stimulus information. By definition, the ideal observer
uses a strategy that yields the best possible performance
for a given task, and therefore provides an index of
information available to perform that task (Barlow,
1978; Kersten, 1987; Geisler, 1989; Kersten, 1990; Braje
et al., 1995; Tjan et al., 1995). Efficiency in any given
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Table 1
A summary of experiments that have measured identification performance for various kinds of complex patternsa

StimulusAuthors Measure SF Manipulation Performance

Accuracy PixelizationHarmon (1973) 16×16 pixel quantizationFaces
(8 c/fw) yielded threshold (50%)
recognition accuracy

Accuracy LP filteringLetters Threshold percent correctGinsburg (1978)
obtained between 1.5 and 3
c/letter

Faces Accuracy Masking by two orthogonal 17.6 cycles/fw produced greatestTieger and Ganz (1979)
maskingcomponent sine-wave

gratings
Accuracy 2-octave Gaussian filteringFaces Threshold percent correctGinsburg (1980)

obtained between 1 and 4
c/face

Faces Accuracy HP and LP filtering Fewer errors with HP=5Fiorentini, Maffei and
Sandini (1983) cycles/fw than with LP=5

c/fw
Ginsburg (1984) Geometric forms Accuracy LP filtering Threshold percent correct

obtained at �2.28 c/object
Rubin and Siegel (1984) Faces and letters Accuracy LP filtering Threshold percent correct

obtained at.7 c/letter and 1
c/face

LettersLegge, Pelli, Rubin and Reading rate LP filtering Reading rate declined rapidly
below �2 c/letterSchleske (1985)

Faces Accuracy 1.5-octave ideal filtering Peak accuracy between 20 andHayes, Morrone and Burr
(1986) 25 c/fw

Toy tanksNorman and Ehrlich (1987) Accuracy, RT 2-octave, HP, and LP Fewest errors and lowest RTs
beyond 28.6 c/picture widthpseudo-Gaussian filtering

FacesSchuchard and Rubin (1989) Accuracy 1.5-octave filtering Equal performance across
frequency ranges

Accuracy Pixelization Steep decrease in accuracyFacesBachmann (1991)
between 15 and 18 pixels/fw
(7.5–9 c/fw)

FacesPeli, Lee, Trempe and Buzney Accuracy LP filtering by adding Steep increase in accuracy above
1-octave exponential filters 4 c/face height(1994)

Faces Accuracy, RT Ideal LP filtering; Steep increase in accuracyCosten, Parker and Craw
pixelization; Gaussian(1994) between 5.5 and 10.5 c/fw
blurring

Accuracy,Letters and gratings HP and LP noise masking Steep increase in threshold s/nSolomon and Pelli (1994)
efficiency below 3 c/ letter for LP and

above 3 c/letter for HP
Costen, Parker and Craw Faces Accuracy, RT Exponential HP and LP Peak changes in accuracy

(1996) between 8 and 16 c/fwfiltering; pixelization
AircraftCannon, Hoffmeister, and Accuracy HP and LP noise masking Steep increase in threshold s/n

Fullenkamp (1997) below �6 c/letter for LP and
above �6 c/letter for HP

AccuracyChung and Legge (1997) 1-octave cosine-log filtering Peak contrast sensitivity forLetters
recognition between 1.8 and 2.5
c/letter

Majaj, Palomares, Fonts, letters, faces, objects, Accuracy Similar findings to Solomon andHP and LP noise masking
Mouchraud, Kotlyarenko and gratings Pelli (1994) and Gold et al.

(1998) for all patternsand Pelli (1998)
Facial expressionsSchwartz, Bayer, and Pelli Accuracy HP and LP noise masking Steep increase in threshold below

8 c/ face for LP and above 8(1998)
c/face for HP

a The studies are listed in chronological order.

task is defined as the ratio of ideal to human threshold
energy. An efficiency of 100% implies that a human
observer is using stimulus information optimally. An

efficiency less than 100% implies that a human observer
is using stimulus information sub-optimally; informa-
tion is being lost somewhere between stimulus presenta-
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tion and response measurement. Because comparison to
the ideal observer controls for differences in available
information, variations in efficiency across experimental
conditions imply variations in the ability of the human
observer to use available information. In contrast, con-
stant efficiency implies that the ability to use available
information is invariant, regardless of changes in
performance.

1.3. Identification efficiency

No study has measured efficiency for face identifica-
tion, although one study has looked at efficiency for
recognizing facial expressions (Bayer, Schwartz & Pelli,
1998). Several studies have measured efficiency for iden-
tifying letters (Parish & Sperling, 1991; Beckman &
Legge, 1994; Solomon & Pelli, 1994; Burns, Farrel,
Moore & Pelli, 1995; Tjan et al., 1995) and 3-D shapes
(Braje et al., 1995; Liu et al., 1995; Tjan et al., 1995). The
stimuli, methods, and results of these studies are summa-
rized in Table 2. Critical identification bands estimated
for letters (Parish & Sperling, 1991) and low-pass filtered
shapes (Braje et al., 1995) are similar. However, none of
these studies directly compared identification efficiencies
for different kinds of band-pass filtered patterns (e.g.
letters versus shapes; letters versus faces) in the same
observers. Therefore, we used a technique similar to
Parish and Sperling (1991) to compare identification
efficiencies for 1- and 2-octave wide band-pass filtered
letters and faces. Again, the main purpose for comparing
identification efficiencies for filtered letters and faces was
to determine whether the efficiency with which human
observers use information at different spatial scales
depends on the kind of pattern being identified.

2. Method

2.1. Obser6ers

Three female and three male members of the Univer-
sity of Toronto Vision Laboratory volunteered as ob-
servers (not all participants were tested in every condi-
tion). All had normal or corrected-to-normal vision.
Participants ranged from 21 to 37 years of age, with a
mean age of 28. Three of the observers were naive with
respect to the experimental hypotheses. All but one of the
participants had previous experience in psychophysical
tasks.

2.2. Apparatus

Stimuli were displayed on a pair of AppleVision 1710
color monitors. One monitor showed the signal and the
other showed dynamic Gaussian noise (see Section 2.3
below for details). Each monitor displayed 800×600

pixels, which subtended a visual angle of 15.8×11.5°
from the viewing distance of 100 cm, at a frame rate of
75 Hz (non-interlaced). A half-silvered mirror placed at
a 45° angle relative to the monitors optically combined
the signal and noise displays. Luminance calibrations
were performed with a Hagner Optikon universal spot
photometer, and the calibration data were used to build
a 2025-element look-up table (Tyler, Chan, Liu, McBride
& Kontsevich, 1992) for each display. The experiment
was conducted in the MATLAB programming environ-
ment (version 4.2c1), using the extensions provided by
the Psychophysics Toolbox (Brainard, 1997) and the
Video Toolbox (Pelli, 1997). When constructing the
stimuli used on each trial, the computer software selected
appropriate luminance values from the calibrated look-
up tables and stored them in the 8-bit look-up tables of
each display. Luminance on the optically-combined
display ranged between 0.5 and 77.9 cd/m2, with an
average luminance of 39 cd/m2. Pixel contrast (as defined
by Eq. (1) below) on the optically-combined display
could be varied between −0.99 and 0.99.

2.3. Stimuli

The stimuli were digital images (256×256 pixels in
size) of letters and faces that were constructed using
Adobe Photoshop (version 3.0), MacPhase (version 2.0),
and MATLAB. The images were generated prior to the
experiment and stored on disk. The values in each image
represented the contrast (cxy) at pixel location (x, y),
defined by Eq. (1):

cxy=
lxy−L

L
(1)

where L is average luminance and lxy is the pixel
luminance. The values in each image file varied from −1
to 1, and were normalized so that contrast variance (i.e.
the variance of the contrast values across the entire
image) equaled 1. Prior to each experimental trial, an
image file was read into memory, contrast variance was
set to the desired value by multiplying the image data by
an appropriate constant, and the contrast values were
converted to luminance values. These luminances were
used to construct a linear 8-bit look-up table for the
display. Finally, the image luminance values were
mapped onto the values stored in the look-up table.

Ten uppercase letters of the English alphabet (A, F,
G, J, L, P, Q, R, T and Y) were used for the letter
identification experiment. The Geneva font was chosen
for its relative simplicity and comparability with previous
studies (Solomon & Pelli, 1994; Tjan et al., 1995). The
letters were equated for height (198 pixels), and ranged
between 100 and 190 pixels in width (mean of 142 pixels,
S.D.=29 pixels). Each letter was centered within a
uniform background of average luminance that was
256×256 pixels in size.
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Table 2
A summary of experiments that have measured identification efficiency for various kinds of complex patternsa

Performance EfficiencyAuthors Stimulus Measure SF Manipulation

Peak sensitivity at 20.25 c/lhParish and Sperling Peak efficiency at 1.49 c/lh (42%)Accuracy,Letters 2-octave Gaussian filtering
efficiency(1991)

Steep increase in threshold s/n be-Accuracy,Solomon and Pelli Letters and gratings Peak efficiency at � 3 c/letterHP and LP noise masking
low 3 c/ letter for LP and above 3efficiency (13%)(1994)
c/letter for HP

Letters (of various alphabets) – – Efficiencies ranged from 4–16%Burns, Farrel, Moore Accuracy,
efficiencyand Pelli (1995)
Accuracy,Line drawings and silhouettes LP Gaussian filtering Performance is relatively constantBraje, Tjan and Legge Steep decrease in efficiency below 6

(1995) as bandwidth increases beyond 6 c/objectefficiencyof 3-D shapes
c/object

Liu, Knill and Kersten –Accuracy, Efficiencies between 10 and 20%3-D thick wire shapes –
(1995) efficiency

– – Letters: 16.3% Shapes: 8%Tjan, Braje, Legge and Accuracy,Unfiltered letters and 3-D
efficiencyKersten (1995) shapes

Filtering by critical band, as deter- – Efficiency of 9% with critical bandAccuracy,Facial expressionsBayer, Schwartz and
mined by Schwartz et al. (1998) & critical areaPelli (1998) efficiency

a The studies are listed in chronological order.
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Fig. 1. The ten unfiltered letter and face stimuli used in the main experiment. All ten images in each set share the same amplitude spectrum (an
average of the individual spectra; see text for details).

The ten letters have different amplitude spectra. Such
amplitude differences could lead to differences in stimu-
lus detectability, which might be used as a cue to
identify some letters. To minimize this potential prob-
lem, differences in the amplitude spectra were removed
in the following way. First, each letter was set to a
contrast of −1 and the background was set to a
contrast of zero. Next, the Fourier transform of each
letter was computed, and the modulus at each spatial
frequency and orientation was averaged across all let-
ters. After averaging, the DC component was set to 0.
Finally, the amplitude spectrum for each letter was
replaced by the average amplitude spectrum, and the
inverse Fourier transforms were computed. The result
of this process was a set of letter stimuli that had
identical amplitude spectra (Fig. 1). It is important to
note that the amplitude spectra of the original letters
differed only slightly from each other, and so the
appearance of letters in Fig. 1 did not differ signifi-
cantly from the original items.

Seven sets of 1-octave, band-pass filtered stimuli were
constructed by filtering the average amplitude spectrum
by 1-octave rectangular filters with center frequencies of
1.1, 2.2, 4.4, 8.8, 17.5, 35.0, and 70.0 c/object height
(c/obj). From the viewing distance of 100 cm, the center
frequencies were 0.2, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0
c/deg. Four sets of 2-octave, band-pass stimuli also
were constructed by filtering the average amplitude
spectrum with 2-octave rectangular filters with center
frequencies of 1.5, 6.2, 24.8, and 49.5 c/obj (0.3, 1.4,
5.6, 11.2 c/deg). The two highest 2-octave bands over-
lapped by 1 octave within the region of 24.8–49.5 c/obj.
The filtered and unfiltered amplitude spectra were com-
bined with the phase spectrum of each letter, to pro-
duce 120 letter stimuli (11 filtered amplitude
spectra×10 phase spectra+1 unfiltered amplitude
spectrum×10 phase spectra). Examples of a 1- and
2-octave filtered letter are shown in Fig. 2.

The faces of ten Caucasian models (five male and five
female) from the University of Toronto Psychology
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Fig. 2. Examples of filtered letter stimuli used in the main experiment. The top left image is an unfiltered ‘A’. The corresponding 1-octave wide
band-pass filtered versions of ‘A’ are shown below the unfiltered image and in the middle column. The center frequencies of the filters applied to
the images are, from top to bottom in the left column: 1.0, 2.2, and 4.4 c/obj height; from top to bottom in the middle column: 8.8, 17.5, 35.0
and 70.0 c/obj height. The 2-octave wide band-pass filtered versions of the same letter are shown in the rightmost column. The center frequencies
of the filters applied to the images are (from top to bottom): 1.5, 6.2, 24.8, and 49.5 c/obj height.

department were used in the face identification experi-
ments. Models were highly familiar to all of the observ-
ers in the experiment, and none of the observers served
as models. All faces were photographed in front of a
uniform black field. Glasses, makeup, and any other
non-facial cues were removed from models’ faces before
being photographed. Each model’s hair was held back
away from the face and forehead by a small head cap.
None of the models had facial hair. All models were
asked to look directly at the camera with a neutral
facial expression. The film was developed directly to
photographic CD-ROM, and each picture was digitally
converted to grayscale and cropped to show only the
inner portion of the face, eliminating non-facial cues

such as hair and ears. The shape of the visible region of
each face was elliptical, and the size and height:width
ratio were constant across all stimuli (198 pixels:140
pixels). The faces were centered within a 256×256
pixel background of average luminance.

The contrast values for each face were first linearly
transformed so that they ranged from −1 to 1 and the
background was set to zero. Next, differences in the
amplitude spectra of the faces were eliminated the same
way as was done with letters. The faces thus shared a
common amplitude spectrum (Fig. 1). The same 1- and
2-octave wide filters used in the creation of the letter
stimuli were applied to the face average amplitude
spectrum and combined with the phase spectrum for
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Fig. 3. Examples of filtered face stimuli used in the main experiment. The top left image is an unfiltered face. The corresponding 1-octave wide
band-pass filtered versions of the face are shown below the unfiltered image and in the middle column. The 2-octave wide band-pass filtered
versions of the same face are shown in the rightmost column. The images are arranged the same way as in Fig. 2.

each of the ten faces, producing a set of 120 face
stimuli. Examples of a 1- and 2-octave filtered face are
shown in Fig. 3.

The face and letter stimuli can be obtained over the
internet1.

2.4. Noise fields

Unfiltered dynamic 2-D Gaussian noise was pro-
duced from individual Gaussian noise fields that were
256×256 pixels in size. The values were taken from a
Gaussian pseudo-random number generator with a
mean of 0 and contrast variance of 0.2. As with the
signal stimuli, each value within the matrix was treated

as a contrast value. The variance chosen ensured that
95% of the values in the distribution would fall within
the linear contrast range of the noise display. Values
beyond 92 S.D. from the mean were truncated at the
maximum and minimum contrast values. The spectral
density of the noise (energy per unit bandwidth) was
1.15×10−6 deg2 in all experimental conditions. A set
of 80 static noise fields was created, and noise fields
were chosen randomly from the set for every frame
within the presentation duration of 500 ms (i.e. a total
of 37 frames/trial).

2.5. Viewing conditions

At the viewing distance of 100 cm, the 256×256
pixel stimulus field subtended a visual angle of 5.25×
5.25°. Each letter within the stimulus field subtended a

1 The unfiltered face and letter images are available over the world
wide web at http://www.psych.utoronto.ca/�vislab.
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vertical visual angle of 4.0°, with a horizontal visual
angle ranging between 2.0 and 3.8°. Faces subtended a
vertical visual angle of 4.0° and a horizontal visual
angle of 2.9°. Viewing was binocular through natural
pupils, and a head/chinrest stabilized the observer’s
head. The monitors supplied the only sources of illumi-
nation during the experiment.

2.6. Procedure

Identification thresholds were estimated using a sin-
gle-interval, ten-choice identification task. Stimulus
contrast variance was manipulated using the method of
constant stimuli. For human observers, pilot studies
identified six contrast variances that typically spanned
the threshold range in each condition. During the ex-
periment, the order of contrast variances was random-
ized, and stimuli were presented at each variance for a
block of 15 trials. Thus, a minimum of 120 trials (15
trials×6 contrast levels) were shown in each condition.
The order of stimulus presentation within each 15 trial
block was random, with the restriction that each of the
ten stimuli was presented at least once. In some cases
the contrast variances taken from the pilot experiments
did not span an observer’s threshold, so additional
contrast levels were tested. In all cases where perfor-
mance did not significantly exceed chance, stimulus
contrast values included the maximum contrast possible
on the display.

Observers were familiarized briefly with the unfiltered
versions of each image before beginning the experiment.
At the start of each trial, a fixation point appeared at
the center of the signal screen, and a brief tone indi-
cated a trial could commence with a mouse click. After
an initial 67 ms of noise alone, the stimulus+noise
combination appeared for 427 ms. Next, the displays
were set to average luminance, and after a brief pause
(100 ms), a set of ten thumbnail versions of the original
unfiltered images (128×128 pixels in size) appeared on
the screen surrounding the region where the signal and
noise had been displayed. Observers identified the stim-
ulus by clicking the mouse on the appropriate image.
Once an image was chosen, the displays were cleared,
and set to average luminance. Auditory feedback after
each trial indicated whether the response was correct.
Only one type of stimulus (either faces or letters) was
used in each testing session. The orders of the tasks
were counterbalanced for observers participating in
both the face and letter identification tasks. The fre-
quency bands were presented in a different random
order for each observer.

Best-fitting (least squares) Weibull functions were fit
to the data, and threshold was defined as the contrast
variance yielding 67% correct responses, which corre-
sponds to a d % of 2 in our conditions.

2.7. Ideal obser6er

For our stimuli and task, it can be shown that
maximizing the cross-correlation between the stimulus
(i.e. signal+noise) and each of the ten possible signal
matrices (templates) is the strategy that yields optimal
performance (Green & Swets, 1966; Tjan et al., 1995).
Ideal observer thresholds were obtained in all condi-
tions through Monte Carlo simulations, in which each
template was compared to the filtered stimulus+noise
combination at a range of contrast values. For each
trial, the ideal observer simply chose the template that
yielded the highest cross-correlation with the stimulus.
Ideal thresholds were estimated from psychometric
functions that were fit to the data from at least 600
simulated trials. Efficiency was defined as the ratio of
ideal to human threshold energy in each condition.

3. Results

3.1. 1-Octa6e ranges

One-octave letter and face identification thresholds
for two human subjects and the ideal observer are
plotted in Fig. 4. The corresponding one-octave letter
and face identification efficiencies for the human ob-
servers are plotted in Fig. 5.

3.1.1. Letters
Fig. 4 shows that the ideal observer was able to

perform the letter identification task in all conditions,
so information always was available to perform the
task. The two human observers were able to perform
the letter identification task in all but the highest fre-
quency condition (70 c/obj), where the maximum dis-
playable image contrast yielded less than 50% correct
performance. For the remaining seven conditions in
which identification was possible, thresholds were ele-
vated in the lowest frequency condition (1.1 c/obj) and
remained relatively constant in the remaining condi-
tions (including the unfiltered condition). The corre-
sponding letter identification efficiencies in Fig. 5 are
also relatively constant across frequencies, except at the
lowest frequencies where efficiency declined by 0.4
(JMG) and 0.7 (JMH) log units and at the highest
frequencies where efficiency fell to 0. Peak efficiency for
the filtered stimuli was about 0.6% for observer JMG
and 0.5% for observer JMH, and was nearly identical
to each observer’s efficiency in the unfiltered condition.

3.1.2. Faces
Fig. 4 shows that the ideal observer was also able to

perform the face identification task in all conditions,
and therefore that stimulus information for identifica-
tion was available in all conditions. However, both
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human observers were unable to perform the face iden-
tification task in most conditions. Both observers were
able to identify the faces in the unfiltered and 17.5 c/obj
conditions; observer JMG was also able to perform
above chance in the 8.8 c/obj condition (although per-
formance never exceeded about 75% correct in this
condition). The corresponding face identification effi-
ciencies in Fig. 5 show efficiency was 0 for both observ-
ers in most conditions. Peak efficiency for both
observers occurred in the unfiltered condition (JMG:
1.3%; JMH:0.4%).

3.1.3. Comparison of letters and faces
Probably the most striking aspect of the data is the

fact that human observers were unable to identify
1-octave filtered faces at most spatial scales, yet were
able to identify identically filtered letters at all but the
highest frequencies. Despite the inability of both ob-
servers to perform the face task in most conditions,
thresholds were obtained for the ideal observer in all

Fig. 5. One-octave wide filtered face and letter identification efficien-
cies for two human observers, plotted as a function of the center
frequency of the filter. The upper abscissa corresponds to c/deg, and
the lower abscissa c/obj. The left ordinate corresponds to efficiency,
expressed as percent. Closed symbols show the performance in the
letter conditions, open symbols the face conditions. The first data
point after the origin along the abscissa is the unfiltered condition.
Error bars on each symbol depict 91 S.E. of the threshold estimate.
Conditions in which thresholds were not obtained are plotted at the
bottom of each panel (efficiency=0).

Fig. 4. One-octave wide filtered letter and face identification
thresholds for two human observers and the ideal observer, plotted as
a function of the center frequency of the filter applied to the images.
The upper abscissa corresponds to c/deg, and the lower abscissa
c/obj. The left ordinate corresponds to contrast variance threshold.
The right ordinate corresponds to threshold signal-to-noise ratio,
(E/N), where E equals the threshold contrast energy (i.e. the product
of the contrast variance and the size of the stimulus, in ° of visual
angle2) and N is the noise spectral density. Closed symbols show the
performance in the letter conditions, open symbols the face condi-
tions. Circles represent human performance, triangles ideal perfor-
mance. The first data point after the origin along the abscissa is the
unfiltered condition. Error bars on each symbol depict 91 S.E. of
the threshold estimate. Often, the error bars are smaller than the
symbols. Conditions where thresholds were not obtained because the
observer was unable to perform significantly above chance are plotted
at the top of each panel (threshold=�).

conditions, indicating that information always was
available to perform the face identification task. How-
ever, ideal face identification thresholds were 0.5–1 log
unit higher than ideal letter identification thresholds for
the unfiltered stimuli and for band-pass stimuli with
center frequencies below 17.5 c/obj. This difference
raises the possibility that human observers could per-
form both the letter and face tasks with equal effi-
ciency, but that some of the thresholds in the face task
simply were higher than the maximum contrast that
could be displayed on our equipment.

We tested this idea in two ways. First, in each
condition, we calculated the ratio of ideal face identifi-
cation thresholds divided by ideal letter identification
thresholds, and then multiplied that ratio by human
letter identification thresholds. The resulting values are
the predicted face identification thresholds for human
observers if efficiency in each condition was the same
for letters and faces. In all cases the predicted threshold
was below the maximum displayable contrast. Second,
we measured face identification performance for ob-
server JMG with no noise and with the stimuli set to
the maximum device contrast in all frequency ranges.
Performance was near chance for all but the 8.8 c/obj,
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17.5 c/obj, and unfiltered conditions. Both results sug-
gest that the failure to identify faces was not solely due
to the limited dynamic range of the displays. Instead,
the failure to identify faces reflects a genuine reduction
in efficiency.

3.2. 2-Octa6e ranges

Two-octave letter and face identification thresholds
for three human subjects and the ideal observer are
plotted in Fig. 6. The corresponding two-octave letter
and face identification efficiencies for the human ob-
servers are plotted in Fig. 7.

3.2.1. Letters
Fig. 6 shows that human and ideal observers were

able to perform the letter identification task in all
conditions. As was found with 1-octave filtered letters,
identification efficiency with 2-octave filtered letters
varied only slightly over a 33-fold range of spatial scale,

Fig. 7. Two-octave wide filtered letter and face identification efficien-
cies for three human observers, plotted as a function of the center
frequency of the filter. Symbol conventions are the same as in Fig. 5.

Fig. 6. Two-octave wide filtered letter and face identification
thresholds for three human observers and the ideal observer, plotted
as a function of the center frequency of the filter. Symbol conventions
are the same as in Fig. 4.

but the 2-octave functions were somewhat more band-
pass in shape (Fig. 7). For all three observers, peak
efficiency for filtered stimuli (0.7–1.5%) occurred at 6.2
c/obj and was 0.25–0.5 log units lower in the 1.5 and
49.5 c/obj conditions. Each observer’s peak efficiency
was similar to that obtained with unfiltered stimuli.

3.2.2. Faces
Fig. 6 shows that the ideal observer was able to

perform the face identification task in all conditions.
Unlike what was found with 1-octave filtered faces,
human observers were able to identify 2-octave filtered
faces in all but the lowest frequency condition (1.5
c/obj). As with 2-octave filtered letters, efficiency for
the filtered faces was greatest in the 6.2 c/face condition
(Fig. 7). Peak efficiency (0.3–1.5%) was nearly identical
to that obtained with unfiltered faces for all observers.
Efficiency decreased by 0.5–1.2 log units as center
frequency increased from 6.2 to 49.5 c/face. Efficiency
was zero for all observers in the 1.5 c/face condition.

3.2.3. Comparison of faces and letters
Human efficiencies for both the filtered faces and

letters peaked with a 2-octave band centered at 6.2
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c/obj. Peak efficiencies were similar for faces and letters,
and observers were as efficient in the 6.2 c/obj conditions
as in the unfiltered conditions. Also, peak efficiencies for
these stimuli were comparable to the peak efficiencies
obtained in the 1-octave task. However, our data show
a clear difference between letter and face identification
as a function of spatial frequency: human observers were
less able to use information available for face than for
letter identification above and below the 2-octave range
centered at 6.2 c/obj.

3.3. Possible factors contributing to low, broadband
letter identification efficiency functions

Absolute letter identification efficiencies in both the 1-
and 2-octave conditions were lower than previous esti-
mates: Our highest identification efficiencies never ex-
ceeded about 1.5%, whereas Parish and Sperling (1991)
reported a peak efficiency of 42%, and Solomon and Pelli
(1994) and Tjan et al. (1995) obtained peak values
between 12 and 16%. Also, our functions relating letter
identification efficiency to spatial frequency were broadly
tuned (especially in the 1-octave condition), whereas
Parish and Sperling (1991) obtained much narrower
functions. We conducted an additional series of experi-
ments to examine these discrepancies. Specifically, we
examined the effects of using: (i) response feedback; (ii)
band-pass, rather than white, noise; and (iii) static, rather
than dynamic, noise.

3.4. The use of feedback

Unlike the current experiments, Parish and Sperling
(1991) did not include feedback in their procedure. We
examined the effects of feedback by testing a new
observer (PJB) without feedback in the 1-octave letter
identification task. Thresholds for PJB with no feedback
were virtually identical to those obtained previously with
observers who received feedback. Thus, the use of
feedback does not appear to alter the either the peak or
the bandwidth of the letter identification efficiency func-
tions.

3.5. Dynamic 6ersus static noise

Parish and Sperling (1991) and Solomon and Pelli
(1994) used static noise in their experiments, whereas the
current experiment used dynamic noise. To examine
whether this difference reduced efficiency in our task, we
re-measured efficiencies for the same 2-octave filtered
letters and faces used in the main experiment embedded
in 2-D static Gaussian white noise. All other experimen-
tal conditions were the same, except that identification
contrast variance thresholds for the ideal and human
observers were estimated with the QUEST adaptive
staircase procedure (Watson & Pelli, 1983). Stimuli

remained blocked for frequency range, and, within a
block, images were chosen randomly from the set of 10
possible choices. A block lasted until either the standard
error of the threshold estimate reached 0.1 log units or
75 trials had elapsed. The final threshold estimates
consisted of the average of at least two thresholds
obtained in this fashion.

Efficiencies for both observers with static and dynamic
noise are shown in Fig. 8. The ideal observer sums
information across time with maximal efficiency, and
therefore reducing the number of independent noise fields
presented during each trial causes ideal letter and face
identification thresholds to increase. Human letter iden-
tification thresholds also increased in the static noise
condition, but less than ideal thresholds. Thus, letter
identification efficiencies with static noise were three to
nine times greater than to those obtained using dynamic
noise. The highest letter identification efficiency with
static noise was approximately 8%, a value that is closer
to the letter identification efficiencies reported by
Solomon and Pelli (1994) and Tjan et al. (1995). Thus,
much of the difference in absolute efficiency between our
initial letter identification data and those obtained previ-
ously can be attributed to the use of dynamic noise.
However, the use of static noise did not influence
absolute face identification efficiency: human and ideal
face identification thresholds increased by similar
amounts in all conditions, and therefore identification
efficiencies for faces embedded in static noise were similar
to those obtained using dynamic noise. These results
suggest that temporal summation of stimulus informa-
tion is more efficient for faces than for letters.

3.6. Unfiltered 6ersus band-pass noise

The current experiments used unfiltered Gaussian
noise, whereas Parish and Sperling (1991) used Gaussian
noise that was filtered by the same band by which the
stimuli had been filtered in each condition. We tested the
possibility that the wide bandwidth of the noise across
all conditions also contributed to our low absolute
efficiencies by re-measuring the 2-octave letter and face
thresholds for one human observer (JMG) with static
Gaussian noise filtered in the same fashion as the stimuli
in each condition. For this type of filtered stimulus and
noise, cross-correlation is still the ideal decision rule.
Under our conditions, ideal thresholds with unfiltered
noise and noise filtered identically to the stimulus are the
same2.

2 In our conditions, the signal-to-noise ratio at each frequency
outside of the stimulus pass-band is zero for both unfiltered noise and
noise filtered identically to the stimulus. Within the stimulus pass-
band, the signal-to-noise ratio at each frequency is the same for both
kinds of noise. Hence, the ideal rule (and ideal threshold) remains the
same under our conditions because filtering the noise in the same
fashion as the stimulus does not change the signal-to-noise ratio at
any frequency.
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Fig. 8. Comparison of two-octave wide filtered letter (top panels) and face (bottom panels) identification efficiencies for two human observers
using either dynamic (closed circles) or static (open circles) noise. Data are plotted as a function of the center frequency of the filter. Symbol
conventions are the same as in Fig. 5.

The resulting letter identification efficiencies were
nearly identical to those obtained with unfiltered noise.
However, face identification efficiencies with band-pass
noise increased by 0.2–0.4 log units in all but the
unfiltered condition (where efficiency remained the
same). Thus, the use of unfiltered noise in our original
experiment appears to have contributed to low face
identification efficiencies but not to low letter identifica-
tion efficiencies. It is interesting to note that these
results suggest that, in our conditions, human observers
integrated information across spatial frequency differ-
ently for letters and faces. The fact that letter identifica-
tion efficiency did not depend on the bandwidth of the
noise suggests that human observers integrated infor-
mation across a band of frequencies no wider than the
stimulus bandwidth (i.e. 2 octaves). However, face iden-
tification efficiency was lower with unfiltered noise,
suggesting that human observers integrated across a
band that was wider than the stimulus bandwidth.

4. Discussion

The purpose of our study was to determine how
human observers use information carried by different
bands of spatial frequencies when identifying letters
and faces. By comparing identification efficiencies for
band-pass versions of two different kinds of complex

patterns, we hoped to determine whether the way the
visual system makes use of information across spatial
scales depends upon the kind of pattern being
identified.

The functions relating identification efficiency to spa-
tial frequency for 1-octave band-pass filtered letters
were relatively broadband in shape, declining by 0.4–
0.7 log units below 2.2 c/letter and falling to 0 above
35.0 c/letter. In the middle range of frequencies, iden-
tification efficiency was relatively constant and approxi-
mately equal to the efficiency obtained with unfiltered
stimuli (0.5–1%). Two-octave filtered letter identifica-
tion efficiency functions were somewhat more band-
pass in shape than the 1-octave functions, with
efficiency peaking at 6.2 c/letter and gradually declining
by 0.25–0.5 log units at the lowest and highest frequen-
cies. For observers JMG and JMH, peak efficiencies for
the 2–octave filtered letters were 0.15–0.3 log units
higher than those obtained with the 1-octave filtered
letters. We suspect that this small difference was due to
practice effects because efficiencies with unfiltered stim-
uli, which were identical across experiments, also in-
creased by similar amounts. Thus, peak identification
efficiencies obtained with 1- and 2-octave filtered letters
were similar to efficiencies obtained with unfiltered
letters.

Identification efficiency for unfiltered faces was simi-
lar to that obtained with unfiltered letters (i.e. 0.5–



J. Gold et al. / Vision Research 39 (1999) 3537–3560J. Gold et al. / Vision Research 39 (1999) 3537–35603550

1.5%). However, face identification was impossible for
both human observers in most of the 1-octave filtered
conditions. Identification also was impossible in the
lowest 2-octave filtered condition (i.e. a center fre-
quency of 1.5 c/face). In the other 2-octave conditions,
face identification efficiency peaked at a stimulus center
frequency of 6.2 c/face and at a value that was similar
to the one obtained with unfiltered faces, declining by
0.5–1.2 log units as the center frequency increased to
49.5 c/face.

Peak efficiency for letters and faces in the 2-octave
condition occurred with band-pass stimuli centered at
6.2 c/obj. This spatial frequency falls within the critical
letter identification band estimated by Solomon and
Pelli (1994), borders the critical letter identification
band estimated by Parish and Sperling (1991), and falls
within several previous estimates of the critical face
identification band (Harmon, 1973; Harmon & Julesz,
1973; Bachmann, 1991; Costen et al., 1994, 1996; Peli et
al., 1994). However, absolute peak identification effi-
ciencies were lower than values reported previously.
Using dynamic noise appears to have contributed to
low identification efficiencies for letters, but not for
faces, in our experiment.

Our results thus reveal some similarities between
letter and face identification efficiencies. First, the
highest efficiencies obtained with filtered stimuli were
similar for both kinds of patterns. Second, in the 2-oc-
tave tasks, peak efficiency occurred at the same fre-
quency range (�6 c/obj). Finally, efficiencies were
similar for unfiltered letters and faces. However, we
also found several striking differences between letter
and face identification efficiencies. Human observers
were able to identify letters, but not faces, at the lowest
spatial scale in the 2-octave filtered face task, and
efficiency for 2-octave filtered faces fell off much more
dramatically beyond 6 c/obj than for identically filtered
letters. More dramatic differences were found in the
1-octave conditions, where human observers were able
to identify 1-octave filtered letters, but not faces, at
most spatial scales. Ideal observer analyses demon-
strated that information always was available to per-
form the face identification task, and subsequent tests
showed that neither the dynamic contrast range offered
by our displays nor the use of external noise placed a
ceiling upon performance in the conditions where faces
were unidentifiable.

How do we interpret the differences found between
letter and face efficiencies? One possibility is that
higher-order mechanisms simply make different use of
information across spatial frequencies for these two
kinds of patterns. However, before accepting this con-
clusion, it is important to consider whether low-level
constraints acting on both letters and faces affect dis-
crimination information differently for the two classes
of stimuli. If so, it may be unnecessary to posit different

processes or mechanisms for letter and face identifi-
cation.

In the following sections we describe three psycho-
physical experiments and a series of computer simula-
tions that tested the effects of several low-level factors
that we hypothesized could have contributed to ineffi-
ciencies in processing. Specifically, two of the experi-
ments examined whether the differences between letter
and face identification efficiencies were due to differ-
ences in either: (i) letter and face amplitude spectra; or
(ii) letter and face detection efficiencies. A third experi-
ment examined the possibility that observers had more
difficulty learning to associate the filtered faces with
their unfiltered counterparts in the response selection
window. The simulations considered the impact of: (i)
intrinsic position uncertainty; (ii) intrinsic size uncer-
tainty; and (iii) the use of sub-ideal templates on cross-
correlator performance. We hoped to address two
related questions with these experiments and simula-
tions. First, to what extent do these factors contribute
to reduced identification efficiency? Second, can the
effects of any of these factors account for the differ-
ences we found between face and letter identification
efficiencies?

4.1. Differences in letter and face amplitude spectra

One difference between letters and faces is the man-
ner in which energy is distributed across the various
spatial frequencies and orientations: our set of letters
had contrast power concentrated at the vertical and
horizontal orientations, whereas contrast power was
distributed more uniformly across orientations for
faces. To determine whether these differences con-
tributed to differences between letter and face identifi-
cation efficiencies, we re-measured efficiencies with a set
of hybrid images made from our original faces and
letters. The hybrid stimuli were exactly the same as
those used in the first experiment, except the average
amplitude spectra were switched between the face and
letter sets (recall that all faces shared a common aver-
aged amplitude spectrum, as did the letters). Only the
2-octave wide filters were used, so a total of 100 new
patterns were created (4 frequency bands×20 ampli-
tude and phase combinations+20 unfiltered images).
All other testing conditions were the same as in the
main experiment.

Ideal observer thresholds were re-calculated with the
new hybrid stimuli and were almost identical to those
obtained in the main experiment with the original im-
ages. Efficiencies for the hybrid and original stimuli for
one observer (JMG) are shown in Fig. 9. Although
there was a drop in absolute efficiency in all hybrid
conditions, the effects of center spatial frequency on
efficiency were similar to those obtained with the origi-
nal images. Differences between face and letter ampli-
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tude spectra therefore cannot account for the differ-
ences between the shapes of the letter and face effi-
ciency functions found in the main experiment.

4.2. Differences in detection efficiencies

Recent studies have suggested that, for some sets of
stimuli, differences among identification efficiencies
may be linked to differences among detection efficien-
cies (Braje et al., 1995; Tjan et al., 1995). Thus, we
examined whether differences between letter and face
identification efficiencies were related to differences be-
tween letter and face detection efficiencies. Detection
efficiencies were measured for the original 2-octave
wide band-pass filtered face and letter stimuli embedded
in the same dynamic 2-D Gaussian noise used in the
main experiment. Detection threshold was defined as
92% correct, which corresponds to the same value of d %
(2) used in the identification tasks (Macmillan & Creel-
man, 1991). The procedure for human observers was
the same as in the identification task, except for the
following changes: (1) there were two 500 ms intervals
separated by a 250 ms delay, during which the displays
were set to average luminance and the fixation point
reappeared in the center of the screen, and one interval
was randomly selected to contain the signal+noise and
the other noise alone; (2) The selection window con-

sisted of the numbers ‘1’ and ‘2’ enclosed in separate
boxes on either side of the location where the stimulus
had previously appeared, and subjects were told to click
the ‘1’ box if the signal had appeared in the first
interval and the ‘2’ box if the signal has appeared in the
second interval; (3) thresholds for both the human
observers and the ideal observer were obtained using
the QUEST procedure. At least two thresholds were
averaged in each condition. The ideal observer’s detec-
tion thresholds were estimated from 1000 simulated
trials (see Appendix A for a description of the ideal
decision rule).

Letter and face detection efficiencies were measured
for three observers. Across all observers, the average
difference between face and letter detection efficiencies
in each condition was less than 0.1 log units and did
not vary systematically across conditions. The failure to
find consistent differences in detection efficiencies
makes it unlikely that the differences between face and
letter identification efficiencies were due solely to differ-
ences in stimulus detectability.

4.3. Differences in learning and similarity

Our procedure required observers to identify band-
pass filtered stimuli by choosing one item from a set of
unfiltered patterns. One obvious difference between let-
ters and faces is that filtered and unfiltered letters look
similar, whereas filtered and unfiltered faces look differ-
ent (compare Figs. 2 and 3). This difference in similar-
ity raises the possibility that it was easier for observers
to learn the association between filtered and unfiltered
letters than for filtered and unfiltered faces. In other
words, differences between letter and face identification
efficiency may reflect differences in response selection,
rather than visual processing per se.

We tested this ‘response selection hypothesis’ by re-
measuring 2-octave identification efficiencies for one
observer (JMG) using a response window that con-
tained thumbnail images that matched the filtered stim-
uli in each condition. We were unable to include the
highest frequency condition because the thumbnail im-
ages in this condition were difficult to detect, even at
the highest displayable contrast. However, in all other
respects, the experiment was the same as the static noise
experiment described above. Since the original experi-
ment, observer JMG had viewed the letters and faces
for many thousands of trials while participating in
other experiments. Therefore, we re-measured efficiency
in the original unfiltered condition to estimate the size
of any practice effect. Letter identification efficiencies in
the new and original experiments were essentially iden-
tical in all conditions: the differences ranged from 0.12
to −0.17 log units, and the mean difference was 0.0008
log units. Thus, there was no evidence of a practice
effect for letter identification, and no evidence that

Fig. 9. Comparison of identification efficiencies for two-octave wide
filtered hybrid and normal letters and faces for one human observer
(JMG). The top panel illustrates efficiencies with the phase spectrum
of letters and either the average amplitude spectrum of the faces
(open symbols) or the average amplitude spectrum of the letters
(closed symbols). The bottom panel illustrates efficiencies with the
phase spectrum of faces and either the average amplitude spectrum of
the faces (open symbols) or the average amplitude spectrum of the
letters (closed symbols).
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using matched thumbnail images in the response selec-
tion window improved letter identification efficiency.
Identification efficiency for unfiltered faces was 0.18 log
units higher than in the original experiment. Efficiencies
for the filtered faces also improved slightly: the differ-
ences ranged from 0.17 to 0.08 log units, and the mean
difference was 0.13 log units. Thus, differences between
efficiencies for 2-octave faces and letters seems not to
be based on differences in response selection. The
nearly uniform increase in efficiency in all conditions is
consistent with the hypothesis that practice on the
additional trials with faces produced a small, non-spe-
cific improvement in JMG’s face identification effi-
ciency. However, there was no evidence that using
matched thumbnail images produced an additional im-
provement in performance in the band-pass filtered
conditions. Similar results were found in a subsequent
experiment with 1-octave filtered faces. These prelimi-
nary results suggest that it is unlikely that differences
between letter and face identification efficiencies were
due to observers having difficulty learning the associa-
tions between filtered and unfiltered versions of the
patterns.

The fact that filtered letters look like unfiltered letters
means that both the filtered and unfiltered stimuli
would be familiar to the observers. Such is not the case
with faces: in many of the conditions the filtered faces
do not look like the unfiltered faces, so the filtered
stimuli would not be familiar. Thus, one could argue
that the reason identification efficiency is higher for
filtered letters than for filtered faces is that the former
are more familiar than the latter. We cannot rule out
this possibility. However, it is worth noting that the
greater similarity between filtered and unfiltered let-
ters—and therefore the greater familiarity of the
filtered letters—probably is caused by perceptual pro-
cesses, and is not an artifact of our filtering procedures.
In other words, despite the fact that filtered letters look
more similar to the unfiltered letters, the cross-
correlations3 between 1- and 2-octave band-pass filtered
stimuli and their unfiltered counterparts are nearly the
same for faces and letters. In fact, the cross-correlations
are slightly higher for faces in most conditions. More-
over, for both letters and faces the correlations are
highest in the low spatial frequency conditions and
decline monotonically with increasing frequency. Thus,
the physical similarity between filtered and unfiltered
items, at least as measured by cross-correlation, cannot

account for the way identification efficiency varies
across spatial scales, nor for the differences between
faces and letters. Of course, the cross-correlation mea-
sure also does not account for the percei6ed similarity
between filtered and unfiltered items.

4.4. Position and size noise

The first factors we considered using simulations
were position and size noise. The ideal observer cross-
correlates the stimulus with templates of appropriate
position and size on every trial. If human observers are
doing something like a template match, then it is rea-
sonable to assume that the position and size of the
templates humans use vary randomly across trials. In
this section we examine the impact of these factors on
human performance in our tasks.

We modeled the effect of each factor by using Monte
Carlo simulations to measure cross-correlator
thresholds in the 2-octave letter and face identification
tasks with varying amounts of either position or size
noise. Position noise was simulated by jittering the
relative horizontal and vertical position of each tem-
plate to the stimulus on each trial for each cross-corre-
lation. The horizontal and vertical displacements were
drawn from Gaussian distributions with S.D. of 1, 2, 3,
and 5 pixels, and the size of the displacement was
rounded to the nearest pixel. Size uncertainty was simu-
lated by isotropically scaling (using nearest-neighbor
interpolation) the relative size of each template to the
stimulus on each trial for each cross-correlation. The
magnitude of the size scaling was a random variable
drawn from Gaussian distributions with S.D. of 2, 5,
and 10% of the original template size.

Not surprisingly, the results of the simulations
showed that position and size noise increased identifica-
tion thresholds significantly at high spatial frequencies,
but had very small effects at low frequencies. For
example, position jitter of 91 pixel (i.e. 91.2 arcmin)
had no effect on thresholds in all but the highest
frequency condition, where efficiency fell by approxi-
mately 0.7 log units. Jitter of 95 pixels had no effect
on thresholds in the 4.4 and 8.8 c/obj conditions, but
made identification impossible at higher spatial scales.
However, the changes in efficiency at higher frequencies
were nearly identical for letters and faces. As with
position jitter, size jitter of 92% only increased
thresholds in the three highest frequency conditions and
jitter of 95 and 910% increased thresholds in the
four highest frequency conditions. Unlike position jit-
ter, size jitter reduced efficiencies more dramatically for
letters than for faces, the opposite of what we found
with human observers. Thus, small amounts of position
and size noise may contribute to the fall off in human
efficiency at the highest spatial scales, but the simula-

3 To calculate the correlation between a filtered item and its
unfiltered counterpart, the contrast variance of both items was set to
one, and the maximum value of the 2-D cross-correlation of the
unfiltered image with the filtered image was computed. One conse-
quence of averaging the amplitude spectra of the faces and letters was
that the correlation between a filtered face and its unfiltered counter-
part was constant across all faces in each condition. Likewise, the
correlation was constant across all letters in each condition.
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tions showed that the effects of position and size noise
alone cannot account for the differences between letter
and face identification efficiencies at either high or low
spatial frequencies.

4.5. Sub-optimal templates

We next considered the idea that human observers
are constrained by the kind of representation(s) they
use to identify stimuli. For our task, the ideal observer
cross-correlates stimuli with templates that exactly
match the possible targets. Constraints on the kinds of
templates that can be used by human observers should
generally reduce efficiency. What is less clear is whether
identical constraints on letter and face templates would
introduce significant differences between letter and face
identification efficiencies.

We first considered the possibility that human ob-
servers used band-pass filters that, unlike the ideal
observer, were not matched precisely to the frequency
content of the stimuli. For example, the bandwidths of
the filters may have been too broad or too narrow, or
they may not have been centered on the stimulus’
center frequency. It is unlikely that this type of ineffi-
ciency can account for the differences that we observed
between faces and letters. Using a filter that is broader
or narrower than the ideal one, or is shifted to lower or
higher frequencies, reduces the available identification
information or introduces more noise and therefore
elevates identification thresholds. In our conditions, the
amount of available identification information (as in-
dexed by the performance of the ideal observer) in 1-
and 2-octave bands of spatial frequency changed slowly
as a function of spatial frequency (see Figs. 4 and 6).
Therefore, slight mismatches between stimulus and
filter bandwidth and/or center frequency should de-
crease identification efficiency by nearly constant
amounts at all spatial scales. We tested this idea by
using Monte Carlo simulations to measure the perfor-
mance of non-optimal cross-correlators in our experi-
mental conditions. The cross-correlators used templates
that were constructed by filtering the unfiltered versions
of the stimuli with isotropic, zero phase shift, rectangu-
lar spatial frequency filters of various bandwidths and
center frequencies. In all other aspects, the simulations
were identical to the ones used to measure the perfor-
mance of the ideal observer. As expected, mismatches
between stimulus and template frequency spectra in-
creased identification thresholds, but the effects were
similar across experimental conditions when the mis-
matches were held constant on an octave scale. Thus,
mismatches in bandwidth and center frequency on the
order of 1–2 octaves simply reduced efficiency uni-
formly across spatial scale. Although such mismatches
in filter shape might contribute to low overall efficiency
in human observers, they still cannot account for the

fall off in efficiency at very low spatial frequencies in
the 2-octave conditions, or the dramatic differences
between faces and letters in the 1-octave conditions.

We next considered the possibility that human ob-
servers used templates corresponding to the unfiltered
stimuli in all stimulus conditions. Why might this be so?
Recall that in our tasks the response window always
contained icons of the unfiltered stimuli, and therefore
human observers were asked to match unfiltered ver-
sions of the stimuli to the filtered images. This response
arrangement may have biased observers to use repre-
sentations of unfiltered items. One line of evidence
against this idea comes from the experiment that found
that identification efficiency for 2-octave filtered letters
was the same with unfiltered noise and with 2-octave
band-pass noise. That result suggests that human ob-
servers based their responses on signals restricted to the
pass-band of the stimulus, rather than the entire band-
width of unfiltered letters. Another piece of evidence
that suggests that human observers did not use
unfiltered templates is that, for both letters and faces,
peak efficiency in the filtered stimuli conditions was the
same as efficiency in the unfiltered condition. If human
observers always used unfiltered templates, then effi-
ciency should have been significantly greater in the
unfiltered stimulus condition. Thus, it is unlikely that
differences between letter and face identification effi-
ciencies were caused by human observers using
unfiltered templates to encode all of the stimuli.

Do observers use a fixed, band-pass channel to iden-
tify letters and faces? If a fixed channel has a bandwidth
that is narrow relative to the stimulus bandwidth, then
shifting the stimulus center frequency should have a
large effect on the amount of information passed by the
filter. Consequently, one would expect identification
efficiency to vary dramatically with stimulus center
frequency. If the channel bandwidth is significantly
greater than the stimulus bandwidth, then shifting the
stimulus center frequency should have a small effect on
the amount of information passed by the filter. There-
fore, an observer that uses a fixed, broad-band channel
should have nearly constant efficiency across a sizable
range of spatial scales. Observers using channels with
intermediate bandwidths would have efficiencies that
fall somewhere in-between these two extremes. For
letters, efficiencies in the 1- and 2-octave conditions are
relatively constant across a wide range of spatial scales,
a result that is consistent with the hypothesis that
observers use a fixed, broad-band channel. However,
the results from the band-pass noise experiment showed
that observers integrated information across a band of
frequencies no wider than 2-octaves when identifying
letters. Thus, observers must have used a relatively
narrow-band channel whose center frequency was ad-
justed to match that of the stimulus to identify letters.
For faces, efficiency in the 2-octave condition fell off as
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stimulus center frequency increased beyond 6.2 c/obj.
Furthermore, the filtered noise experiment showed that
observers were using a channel whose bandwidth was
greater than the 2-octave stimulus bandwidth when
identifying faces. Both results are qualitatively consis-
tent with the hypothesis that observers use a fixed
channel of intermediate bandwidth (i.e. greater than 2
octaves) to identify faces. However, the results with
1-octave filtered faces are inconsistent with this hypoth-
esis, because observers could only identify filtered faces
within a very narrow frequency range.

Monte Carlo simulations were used to further exam-
ine the possibility that face identification in human
observers was based on the response of a fixed spatial
frequency channel. Computer simulations calculated
the performance of a fixed-channel observer that uses
an ideal decision rule to identify faces that have been
passed through a noisy, linear spatial frequency filter
(Braje et al., 1995). In our simulations, the input stimu-
lus, consisting of the face and external noise, was
passed through a spatial frequency filter. Internal Gaus-
sian white noise was added after the filtering
operation4, and the simulated observer then compared
the filtered stimulus to a set of filtered templates using
the ideal decision rule derived by Braje et al. (1995).
The modulation transfer function of the filter was a
Gaussian function of the logarithm of spatial fre-
quency. Filters with center frequencies of 4.6, 9.3, and
18.6 c/obj and bandwidths (at half-height) of 90.5,
91, and 91.5 octaves were used in separate simula-
tions. The contrast variance of the internal Gaussian
noise was varied from 0.007 to 0.2 in separate simula-
tions. When the filter bandwidth was 90.5 octaves, the
functions relating efficiency and stimulus center fre-
quency all had prominent peaks. For example, in the
1-octave conditions, when the filter was centered on 9.3
c/obj and the variance of the internal noise was 0.02,
efficiency was 13, 64, and 34% for stimulus center
frequencies of 4.4, 8.8, and 17.5 c/obj 1-octave condi-
tions, respectively, and essentially 0 with other center
frequencies. In the 2-octave conditions, efficiency was
55 and 16% for stimuli with center frequencies of 6.2
and 24.8 c/obj, respectively, and essentially 0 with other
center frequencies. Efficiency in the unfiltered condition
was 21%. Changing the amount of internal noise simply
shifted efficiencies by approximately the same propor-
tion in all conditions. Changing the filter’s center fre-
quency to 4.6 or 18.6 c/obj simply shifted the location
of peak efficiency to 4.6 or 18.6 c/obj, and lowered

efficiency in the unfiltered condition. Finally, increasing
the filter’s bandwidth to 91.5 octaves resulted in sig-
nificantly flatter efficiency versus stimulus frequency
curves: going from the lowest to the highest stimulus
center frequencies, efficiency was 12, 30, 66, 75, 74, 46,
and 10% in the 1-octave conditions and 1, 68, 50, and
35% in the 2-octave conditions. Efficiency in the
unfiltered condition was 50%.

If human observers used a fixed band-pass filter to
identify faces, and if all other constraints on face iden-
tification do not depend on the spatial frequency con-
tent of the stimulus, then human efficiencies should be
qualitatively similar to those obtained with a simulated
fixed-band observer. More specifically, we would expect
human efficiencies to be a constant fraction of the
fixed-band observer’s efficiencies. The two human ob-
servers could identify 1-octave filtered faces only in the
8.8 c/obj condition, and one observer also was able to
perform the task in the 17.5 c/obj condition. The
fixed-band observer is most efficient in those conditions
and performs very poorly in the other conditions when
the filter has a bandwidth of 90.5 octaves and is
centered on 9.3 c/obj. If we assume that human effi-
ciency is a small fraction of the fixed-band observer’s,
then we could construct a model that correctly predicts
that identification would be possible only in the 8.6 and
17.5 c/obj conditions. However, such a model makes
some important incorrect predictions. First, it predicts
that peak efficiency in the band-pass conditions should
be higher than efficiency in the unfiltered condition.
Second, it predicts that in the 2-octave conditions,
human observers should be unable to identify faces in
the highest frequency condition. To account for the
results in the 2-octave conditions, the model would
have to be changed by assuming that the internal filter
has a broader bandwidth (e.g. 91.5 octaves). How-
ever, a model with a broader bandwidth incorrectly
predicts that face identification should be possible in
many of the 1-octave conditions. No single combina-
tion of internal noise, filter center frequency, or filter
bandwidth mimicked human performance in all condi-
tions. The simulations therefore suggest that either
human observers did not base face identification on the
responses of a fixed channel, or that the effects of other
constraints that were not included in our simulated
observer varied across conditions.

4.6. Spatial sampling

So far, we have considered how letter and face
identification are affected by intrinsic uncertainty about
stimulus position and size, and by changes in the spatial
frequency tuning of the filters underlying identification.
Our simulations indicate that these factors have similar
effects on the amount of available identification infor-
mation for faces and letters, and therefore cannot ac-

4 For the Gaussian frequency filters used in our simulations, adding
internal noise is necessary because filtering simply attenuates the
signal and noise at each frequency component by equal amounts, and
therefore does not change the signal-to-noise ratio. Hence, the perfor-
mance of the narrow-band observer is equivalent to that of the ideal
observer when the internal noise is zero.
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count for the dramatic differences between face and
letter identification efficiencies found in human observ-
ers. Thus, if these factors are the primary constraints on
human performance, then it is necessary to assume that
they differ significantly for letter and face stimuli. For
example, one could construct a model in which spatial
filters that differed in bandwidth, center frequency, and
internal noise were used to identify letters and faces.
Although such a scheme may account for the major
features of the data, it is unsatisfying theoretically
because frequency-selective filters generally are thought
to be part of the initial, bottom-up processing of the
retinal image, and the operation of such mechanisms is
thought to be independent of stimulus type. Thus, we
have searched for other factors that, when applied in
the same way, constrain performance in face and letter
identification in different ways. In this section we con-
sider one such factor, namely incomplete spatial sam-
pling of the stimulus.

The ideal observer uses information available at ev-
ery pixel to identify stimuli. One way of modeling low
identification efficiency by human observers is to as-
sume that they use the available information only at a
subset of pixels (Tjan et al., 1995). The effects of
selective spatial sampling on identification were exam-
ined by programming a simulated observer that was
identical to the ideal observer, except that most of the
pixels in the ideal templates were set to 0. In other
words, only a small subset of stimulus pixels affected
the performance of this simulated observer.

Our working hypothesis was that human observers
would use the most informative pixels, and therefore it
was necessary to estimate the amount of information
carried by each pixel. The amount of information was
estimated by calculating the performance of an ideal
observer that identified a stimulus on the basis of the
contrast value at a single pixel. In these single-pixel
simulations, the noise was identical to the noise used in
the ideal observer simulations, but stimulus contrast in
each condition was set to 4 log units above the ideal
observer’s identification threshold. On each simulated
trial, a target letter or face was selected randomly, noise
was added to the contrast value at a single pixel for
that stimulus, and the simulated observer had to iden-
tify the stimulus on the basis of that single contrast
value. The pixel’s coordinates and the signal-plus-noise
distributions for all items were known to the observer,
and the item that maximized the a posterior probability
of receiving that contrast value was selected. Five hun-
dred simulated trials were run at each pixel, and the
proportion of correct responses, which ranged from
approximately 0.1 to approximately 0.7, were used to
rank order the pixels in terms of the information avail-
able for identification. Fig. 10 shows the top 10% most
informative pixels in the 1-octave letter and face condi-
tions: each pixel that was in the top 10% is set to 1 (i.e.

white), and the remaining pixels are 0 (i.e. black). For
faces, the 10% most informative pixels were clustered
near the eyes, nose, and mouth. Although it is not
obvious from Fig. 10, the pixels near the eyes carried
the most information, followed by pixels near the nose
and mouth5.

To simulate the effects of selective spatial sampling,
the ideal observer’s templates for each condition were
multiplied by matrices like those illustrated in Fig. 10.
The result of this multiplication was a template that
was 0 everywhere except at the most informative pixels,
where the values were the same as in the ideal template.
These templates then were used in simulations to esti-
mate identification thresholds for the selective spatial
sampling observer. Finally, estimates of efficiency were
calculated from the ratio of thresholds for the ideal and
spatial sampling observers. Efficiencies for both letters
and faces increased monotonically with stimulus center
frequency. However, the rate of increase was the same
for both letters and faces. As the percentage of pixels
used increased, identification efficiencies increased
nearly uniformly in all conditions.

Clearly, the pattern of efficiencies for the spatial
sampling observer differs from the one obtained from
human observers. Therefore, if human observers do
engage in selective spatial sampling, they do not use the
most informative pixels in each condition. This conclu-
sion may not be surprising, because the amount of
experience that observers received with the band-pass
letters and faces was quite limited (approximately 120
trials per threshold), at least relative to the experience
they have had with unfiltered versions of those stimuli.
Moreover, the testing conditions may not have been
optimal for learning which pixels were most informa-
tive. Recall that our simulated single-pixel observer was
presented with stimuli that were substantially above
threshold. The elevated contrast was necessary because
each pixel carries a very small fraction of the total
stimulus information. Hence, when stimulus contrast
was set to the ideal observer’s threshold, performance
on any single pixel, even the most informative one, was
only slightly better than chance. When testing human
observers, the stimulus contrast on most trials was near
identification threshold, and so may not have been high
enough for people to determine accurately which spa-
tial locations carried the most information.

If human observers did not sample the most informa-
tive pixels, then which ones did they choose? One study
has suggested that a single band-pass channel centered
between 3 and 8 c/obj mediates identification of both
unfiltered letters and faces (Majaj et al., 1998). Perhaps
human observers have learned a spatial sampling strat-
egy that would be optimal for that channel, and then

5 Note that the set of n most informative pixels (as defined by our
procedure) will not necessarily be the most informative set of n pixels.
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Fig. 10. The top 10% most informative pixels in each condition of the 1-octave (a) letter and (b) face identification tasks. For both figures, the
top leftmost panel corresponds to the unfiltered condition. The center frequencies of the stimuli for the remaining panels are (from top to bottom):
in the left column, 1.0, 2.2, and 4.4 c/obj; in the right column, 8.8, 17.5, 35.0 and 70.0 c/obj. See text for more details.

used that strategy in all of our conditions. Although
speculative, this suggestion is plausible because: (i) hu-
man observers have considerable experience identifying
letters and frontal views of faces; (ii) the most informa-
tive pixels in this range correspond to the eyes, nose,
and mouth, and these features are thought to be impor-
tant for face recognition; and (iii) as stated above, there
was little opportunity to learn new sampling strategies.
For these reasons, we estimated the performance of a
selective-sampling observer that used only a fraction of
the most informative pixels drawn from the 2-octave,
6.2 c/obj filtered letters and faces in all conditions. We
chose to use the top 2% most informative pixels be-

cause these pixels were all clustered around the eyes in
the face stimuli. We also included position jitter (91
pixel) to model the fall-off in efficiency found for
human observers at the higher frequencies.

The estimated efficiencies for the 1- and 2-octave
stimulus conditions are shown in Fig. 11. Several as-
pects of these results are noteworthy. First, the drop in
efficiency at low frequencies was especially pronounced
in faces. In fact, face identification efficiency was essen-
tially 0 in the 1.1, 2.2, and 4.4 c/obj 1-octave conditions
and in the 1.5 c/obj 2-octave condition. Second, effi-
ciencies for both letters and faces fell off at the highest
frequencies in both the 1-octave and 2-octave tasks. For
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letters, efficiency was 0 in the 70 c/obj 1-octave condi-
tion. Separate simulations showed that the fall off in
efficiency at low spatial frequencies was due entirely
to the effects of selective spatial sampling, whereas the
fall off at high spatial frequencies was due entirely to
the effects of position jitter. Third, efficiency in the
unfiltered condition was within 0.1–0.2 log units of
peak efficiency in the band-pass conditions for both
letters and faces. Fourth, the efficiencies obtained with
both letters and faces did not depend significantly on
stimulus bandwidth: for both types of patterns, iden-
tification efficiencies were similar in the 1- and 2-oc-
tave conditions. All of these results are qualitatively
consistent with those obtained from human observers.
In particular, the selective spatial sampling observer,
like human observers, exhibits large differences be-
tween letter and face efficiencies at low frequencies.

However, there also are discrepancies between the
simulated and real efficiencies. The most obvious dif-
ference is that the selective spatial sampling observer
is two to five times more efficient at identifying faces
than letters, whereas human observers were about
equally efficient with both types of stimuli. Another
difference is that the selective sampling observer is
capable of identifying faces even at the highest spatial
scales, whereas humans were unable to identify letters
and faces in the 70 c/obj 1-octave condition, and
faces in the 35 c/obj 1-octave condition. Finally, in
our simulations the high frequency fall-off in effi-
ciency for the selective spatial-sampling observer in
the 2-octave conditions was similar for letters and
faces, whereas the decrease in efficiency at high fre-

quencies for human observers was more dramatic for
faces than for letters. Thus, selective spatial sampling
provides a qualitative account for some, but not all,
aspects of our data.

5. Conclusion

We found that the ability of human observers to
make use of information across spatial scales differs
for letters and faces. We ruled out several potential
explanations for the differences, including: differences
in global amplitude spectra; differences in detection
efficiency; differences in the ability to learn the associ-
ation between filtered and unfiltered patterns; the use
of a single, fixed, band-pass channel; spatial uncer-
tainty; and size uncertainty. However, selective spatial
sampling did provide a qualitative account for many
aspects of our data. Some of the quantitative dis-
crepancies between spatial sampling and human ob-
servers might reflect non-optimal sampling strategies
used by humans. For example, human observers may
sample faces in a way that supports both identifica-
tion of the face and recognition of the face’s emo-
tional expression. Recognition of emotional expression
depends strongly on an area centered on the mouth
(Bayer et al., 1998), but in our tasks the most infor-
mative pixels for identification were clustered near the
eyes. Thus, a sampling strategy that diverted some
samples from the eyes to the mouth would lower
identification efficiency. In any case, the goal of these
simulations was not to outline a quantitative model of
letter and face identification. Instead, the goal was to
highlight factors that ultimately might be incorporated
into a quantitative model. Our results suggest that it
would be fruitful to investigate which spatial sampling
strategies are used by human observers.
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Fig. 11. One- and 2-octave wide filtered letter and face identification
efficiencies for a simulated observer that used only the top 2% most
informative pixels from the 2-octave, 6.2 c/obj condition across all
conditions, plotted as a function of the center frequency of the filter.
There was also 91 pixel of random position jitter. Open symbols
show the performance in the 1-octave conditions, closed symbols the
2-octave conditions. Circles represent face efficiencies, triangles letter
efficiencies. Plotting conventions are the same as in Fig. 5.
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Appendix A

The ideal rule for maximizing percent correct in a
two-interval forced-choice detection task limited by
white noise is to choose the interval that yields the
highest a posteriori probability of having contained the
signal (Green & Swets, 1966; Braje et al., 1995; Tjan et
al., 1995). For our task, the ideal observer does not
know which of the ten possible stimuli appeared within
one of the intervals, and therefore must compute the a
posteriori probabilities that each of the ten possible
images appeared within each of the two intervals. It
also must take into account the a posteriori probabili-
ties that each interval contained noise alone. Formally,
the decision rule may be expressed as:

where
R= the data in interval one, represented as contrast
values,
L= the data in interval two, represented as contrast
values,
Tij= the value at pixel i in the jth template (image),
represented as contrast values,
n= the number of pixels in each image (256×256),
s= the standard deviation of the noise contrast.

On a given trial, the ideal observer chooses the first
interval if P is greater than 1, and the second interval if
P is less than 1. Because all of our stimuli share a
common amplitude spectrum,

%
n

i=1

Tij
2

will be the same for all of the images in a set, and can
be removed from the ratio. The ideal rule can then be
simplified to:
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Thus the ideal decision rule for our task and stimuli is
to pick the interval that yields the highest sum of the
exponentiated cross-correlations between the data and
the templates.
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